Skip to main content
Log in

Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report a novel time-resolved photoacoustic-based technique for studying the thermal decomposition mechanisms of some secondary explosives such as RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), picric acid, 4,6-dinitro-5-(4-nitro-1H-imidazol-1-yl)-1H-benzo[d] [13] triazole, and 5-chloro-1-(4-nitrophenyl)-1H-tetrazole. A comparison of the thermal decomposition mechanisms of these secondary explosives was made by detecting NO2 molecules released under controlled pyrolysis between 25 and 350 °C. The results show excellent agreement with the thermogravimetric and differential thermal analysis (TGA–DTA) results. A specially designed PA cell made of stainless steel was filled with explosive vapor and pumped using second harmonic, i.e., λ = 532 nm, pulses of duration 7 ns at a 10 Hz repetition rate, obtained using a Q-switched Nd:YAG laser. The use of a combination of PA and TGA–DTA techniques enables the study of NO2 generation, and this method can be used to scale the performance of these explosives as rocket fuels. The minimum detection limits of the four explosives were 38 ppmv to 69 ppbv, depending on their respective vapor pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Chakraborty, R.P. Muller, S. Dasgupta, W.A. Goddard, J. Phys. Chem. A 104, 2261 (2000)

    Article  Google Scholar 

  2. J.P. Agrawal, High Energy Materials (Wiley, ISBN: 3527326103, 2010)

  3. V. Yang, T.B. Brill, W. Ren, Solid propellant chemistry combustion, and motor interior ballistics. Progress in Astronautics and Aeronautics, 188, 129 (2002)

  4. A. Strachan et al., J. Chem. Phys. 122, 054502 (2005)

    Article  ADS  Google Scholar 

  5. R.W. Conner, D.D. Dlott, J. Phys. Chem. 116, 14737 (2012)

    Google Scholar 

  6. R. Behrens Jr, S. Bulusu, J. Phys. Chem. 96, 8891 (1992)

    Article  Google Scholar 

  7. D. Srinivas, V.D. Ghule, S.P. Tewari, K. Muralidharan, Chem. Eur. J. 18, 15031 (2012)

    Article  Google Scholar 

  8. P.C. Chen, W. Lo, S.C. Tzeng, TheoChem 428, 257 (1998)

    Article  Google Scholar 

  9. Z. Jian-Guo, Z. Anorg. Allg. Chem. 638, 1212 (2012)

    Article  Google Scholar 

  10. C. Behrend, K. Heesche-Wagner, Appl. Environ. Micobiol. 65, 1372 (1999)

    Google Scholar 

  11. B.R. Folsom, J. Ind. Microbiol. 19, 123 (1997)

    Article  Google Scholar 

  12. V. Gold, A.Y. Miri, S.R. Robinson, J. Chem. Soc. Perkin Trans. 2, 243 (1980)

    Article  Google Scholar 

  13. W. Kaim, Coord. Chem. Rev. 230, 127 (2002)

    Article  Google Scholar 

  14. M.A. Alvarez, C.L. Kitts, J.L. Botsford, P.J. Unkefer, Can. J. Microbiol. 41, 984 (1995)

    Article  Google Scholar 

  15. A. Miklos, P. Hess, A. Mohacsi, J. Sneider, S. Kamm, S. Schafer, Photo acoustic and photo thermal phenomena, 10th international conference, ed. by I.F. Scudier, M. Bertolotti (AIP, Woodbury, 1999)

  16. M.W. Sigrist, Air monitoring by spectroscopic techniques, (Chemical analysis), vol. 127 (Wiley, New York, 1994)

    Google Scholar 

  17. F. Yehya, A.K. Chaudhary, J. Mod. Phys. 2, 200 (2011)

    Article  Google Scholar 

  18. B. St. J-Philippe, L. Stephane Schlit: Spectrochim. Acta 63, 899 (2006)

    Article  Google Scholar 

  19. A. Miklos, P. Hess, Rev. Sci. Instrum. 72, 1937 (2001)

    Article  ADS  Google Scholar 

  20. B. Baumann, B. Kost, M. Wolff, H. Groninga, Modeling and Numerical Investigation of Photoacoustic Resonators, Modelling and Simulation, ed. by G. Petrone, G. Cammarata (INTECH-2008 ISBN: 978-3-902613-25-7)

  21. L. Duggen, N. Lopes, M. Willatzen, H.-G. Rubahn, Int. J. Thermophys. 32, 774 (2011)

    Article  ADS  Google Scholar 

  22. G. RundeL, Edward P.C, C. Nai-lin: Analyst. 113, 595 (1988)

    Article  Google Scholar 

  23. S. Thomas, Anal. Bioanal. Chem. 384, 1071 (2006)

    Article  Google Scholar 

  24. L.B. Kerr, J.G. Atwood, Appl. Opt. 7, 915 (1986)

    Article  ADS  Google Scholar 

  25. F. Yehya, A.K. Chaudhary, Appl. Phys. B. 106, 953 (2012)

    Article  ADS  Google Scholar 

  26. F. Yehya, A.K. Chaudhary, Int. J. Thermophys. 33, 2055 (2012)

    Article  ADS  Google Scholar 

  27. M.A. Gondal, M.A. Dastageer, J. Environ. Sci. Health. Part A 45, 1406 (2010)

    Article  Google Scholar 

  28. G.D. Gillispie, A.U. Khan, J. Chem. Phys. 65, 1624 (1976)

    Article  ADS  Google Scholar 

  29. J. Orphal, K. Chance, JQSRT 82, 491 (2003)

    Article  ADS  Google Scholar 

  30. F. Yehya, A.K. Chaudhary, Appl. Phys. B. 110, 15 (2013)

    Article  ADS  Google Scholar 

  31. F. Yehya, A.K. Chaudhary, Sens. Actuators B 178, 324 (2013)

    Article  Google Scholar 

  32. S.D. Watt, M.D. Cliff, Evaluation of 1,33-Trinitoazetidine (TNAAZ)-A High Performance Melt-Castable Explosive (DSTO Aeronautical and Marine Research Lab, Melbourne Australia)

  33. J. Kalaman, H.W. Van Kesteren, Appl. Phys. B 90, 197 (2008)

    Article  ADS  Google Scholar 

  34. V.L. Korolev, T.V. Petukhova, T.S. Pivina, A.A. Porollo, A.B. Sheremetev, K.Y. Suponitskii, V.P. Ivshin, Russ. Chem. Bull. Int. Ed. 55, 1388 (2006)

    Article  Google Scholar 

  35. Y.H. Pao, C.P. Claspy, Opto-Acoustic Spectroscopy and Detection (Academic press, New York, 1977)

    Google Scholar 

  36. A. Rosencwaig, Photo Acoustic and Photo Acoustic Spectroscopy (Wiley, New York, 1980)

    Google Scholar 

  37. F. Yehya, A.K. Chaudhary, Opt. Commun. 312, 16 (2014)

    Article  ADS  Google Scholar 

  38. K.S. Rao, F. Yehya, A.K. Chaudhary, A. Sudheer, A.K. Sahoo, J. Anal. Appl. Pyrolysis 109, 132 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Prof. F. Tittel and reviewers for their critical comments to improve the quality of the manuscript. We also express our special thanks to Dr. G. Manoj Kumar, Faculty, ACRHEM for extending help in proof reading and valuable suggestions for modifying the text. We gratefully acknowledge the Department of Science and Technology (SERC Project, No: SR/S2/LOP-13/03) and Defense Research Development Organization, India, for their partial financial support. One of the authors, F. Yehya, gratefully acknowledges ACRHEM, DRDO, Ministry of Defense, Government of India for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Chaudhary.

Ethics declarations

Conflict of interest

It is to be noted that Our Centre named ACRHEM is an integrated part of the University of Hyderabad and funded by Ministry of Defense, Government of India, vide Project No. DRDO/02/0201/2011/00060 Phase-II, dated June 1, 2011. It has no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yehya, F., Chaudhary, A.K., Srinivas, D. et al. Study of thermal decomposition mechanisms and low-level detection of explosives using pulsed photoacoustic technique. Appl. Phys. B 121, 193–202 (2015). https://doi.org/10.1007/s00340-015-6218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6218-6

Keywords

Navigation