Skip to main content
Log in

Effects of signal corrections on measurements of temperature and OH concentrations using laser-induced fluorescence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Temperature and OH concentrations derived from OH laser-induced fluorescence (LIF) are known to be susceptible to effects such as collisional quenching, laser absorption, and fluorescence trapping. In this paper, a set of analytical and easy-to-implement methods is presented for treating these effects. The significance of these signal corrections on inferred temperature and absolute OH concentration is demonstrated in an atmospheric-pressure, near-stoichiometric CH4-air flame stabilized on a Hencken burner, for laser excitation of both the A2Σ+←X2Π (0,0) and (1,0) bands. It is found that the combined effect of laser attenuation and fluorescence trapping can cause considerable error in the OH number density and temperature if not accounted for, even with A–X(1,0) excitation. The validity of the assumptions used in signal correction (that the excited-state distribution is either thermalized or frozen) is examined using time-dependent modeling of the ro-vibronic states during and after laser excitation. These assumptions are shown to provide good bounding approximations for treating transition-dependent issues in OH LIF, especially for an unknown collisional environment, and it is noted that the proposed methods are generally applicable to LIF-based measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89–123 (2005)

    Article  Google Scholar 

  2. D.E. Heard, M.J. Pilling, Chem. Rev. 103, 5163–5198 (2003)

    Article  Google Scholar 

  3. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J.C. Whitehead, A.B. Murphy, A.F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T.J. Sommerer, M.J. Kushner, U. Czarnetzki, N. Mason, J. Phys. D Appl. Phys. 45, 253001 (2012)

    Article  ADS  Google Scholar 

  4. P.H. Paul, J. Quant. Spectrosc. Radiat. Transf. 51, 511–524 (1994)

    Article  ADS  Google Scholar 

  5. A.E. Bailey, D.E. Heard, D.A. Henderson, P.H. Paul, Chem. Phys. Lett. 302, 132–138 (1999)

    Article  ADS  Google Scholar 

  6. R.A. Copeland, M.J. Dyer, D.R. Crosley, J. Chem. Phys. 82, 4022–4032 (1985)

    Article  ADS  Google Scholar 

  7. R.A. Copeland, D.R. Crosley, J. Chem. Phys. 84, 3099–3105 (1986)

    Article  ADS  Google Scholar 

  8. I.J. Wysong, J.B. Jeffries, D.R. Crosley, J. Chem. Phys. 92, 5218–5222 (1990)

    Article  ADS  Google Scholar 

  9. J.B. Jeffries, K. Kohse-Höinghaus, G.P. Smith, R.A. Copeland, D.R. Crosley, Chem. Phys. Lett. 152, 160–166 (1988)

    Article  ADS  Google Scholar 

  10. P.H. Paul, J.L. Durant, J.A. Gray, M.R. Furlanetto, J. Chem. Phys. 102, 8378–8384 (1995)

    Article  ADS  Google Scholar 

  11. P.H. Paul, J. Phys. Chem. 99, 8472–8476 (1995)

    Article  Google Scholar 

  12. A. Jörg, U. Meier, R. Kienle, K. Kohse-Höinghaus, Appl. Phys. B 55, 305–310 (1992)

    Article  ADS  Google Scholar 

  13. M. Tamura, P.A. Berg, J.E. Harrington, J. Luque, J.B. Jeffries, G.P. Smith, D.R. Crosley, Combust. Flame 114, 502–514 (1998)

    Article  Google Scholar 

  14. P. Beaud, P.P. Radi, D. Franzke, H.-M. Frey, B. Mischler, A.-P. Tzannis, T. Gerber, Appl. Opt. 37, 3354–3367 (1998)

    Article  ADS  Google Scholar 

  15. R. Kienle, M.P. Lee, K. Kohse-Höinghaus, Appl. Phys. B 62, 583–599 (1996)

    Article  ADS  Google Scholar 

  16. U. Rahmann, W. Kreutner, K. Kohse-Höinghaus, Appl. Phys. B 69, 61–70 (1999)

    Article  ADS  Google Scholar 

  17. C. Cathey, J. Cain, H. Wang, M.A. Gundersen, C. Carter, M. Ryan, Combust. Flame 154, 715–727 (2008)

    Article  Google Scholar 

  18. T.R. Meyer, S. Roy, T.N. Anderson, J.D. Miller, V.R. Katta, R.P. Lucht, J.R. Gord, Appl. Opt. 44, 6729–6740 (2005)

    Article  ADS  Google Scholar 

  19. J. Luque, D.R. Crosley, Appl. Phys. B 63, 91–98 (1996)

    Article  ADS  Google Scholar 

  20. R.P. Lucht, D.W. Sweeney, N.M. Laurendeau, Combust. Flame 50, 189–205 (1983)

    Article  Google Scholar 

  21. J.T. Salmon, N.M. Laurendeau, Appl. Opt. 24, 1313–1321 (1985)

    Article  ADS  Google Scholar 

  22. C.C. Wang, L.I. Davis Jr., Appl. Phys. Lett. 25, 34–35 (1974)

    Article  ADS  Google Scholar 

  23. F. Bormann, T. Nielsen, M. Burrows, P. Andresen, Appl. Phys. B 62, 601–607 (1996)

    Article  ADS  Google Scholar 

  24. M. Versluis, N. Georgiev, L. Martinsson, M. Aldén, S. Kröll, Appl. Phys. B 65, 411–417 (1997)

    Article  ADS  Google Scholar 

  25. J.A. Coxon, Can. J. Phys. 58, 933–949 (1980)

    Article  ADS  Google Scholar 

  26. J. Luque, D. R. Crosley, LIFBASE, database and spectral simulation for diatomic molecules, SRI International Report MP-99-009, 1999

  27. E.C. Rea, A.Y. Chang, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 37, 117–127 (1987)

    Article  ADS  Google Scholar 

  28. E.C. Rea, A.Y. Chang, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 41, 29–42 (1989)

    Article  ADS  Google Scholar 

  29. U. Rahmann, A. Bülter, U. Lenhard, R. Düsing, D. Markus, A. Brockhinke and K. Kohse-Höinghaus, LASKIN-A Simulation Program for Time-Resolved LIF-Spectra, Internal Report, University of Bielefeld, Faculty of Chemistry, Physical Chemistry I. http://pc1.uni-bielefeld.de/~laskin

  30. N.S. Bergano, P.A. Jaanimagi, M.M. Salour, J.H. Bechtel, Opt. Lett. 8, 443–445 (1983)

    Article  ADS  Google Scholar 

  31. M. Köllner, P. Monkhouse, J. Wolfrum, Chem. Phys. Lett. 168, 355–360 (1990)

    Article  ADS  Google Scholar 

  32. R. Sadanandan, W. Meier, J. Heinze, Appl. Phys. B 106, 717–724 (2012)

    Article  ADS  Google Scholar 

  33. T.M. Muruganandam, B.-H. Kim, M.R. Morrell, V. Nori, M. Patel, B.W. Roming, J.M. Seitzman, Proc. Combust. Inst. 30, 1601–1609 (2005)

    Article  Google Scholar 

  34. J.M. Seitzman, R.K. Hanson, P.A. DeBarber, C.F. Hess, Appl. Opt. 33, 4000–4012 (1994)

    Article  ADS  Google Scholar 

  35. S. Kostka, S. Roy, P.J. Lakusta, T.R. Meyer, M.W. Renfro, J.R. Gord, R. Branam, Appl. Opt. 48, 6332–6343 (2009)

    Article  Google Scholar 

  36. J. Luque, D.R. Crosley, J. Chem. Phys 109, 439–448 (1998)

    Article  ADS  Google Scholar 

  37. R.A. Copeland, M.L. Wise, D.R. Crosley, J. Phys. Chem. 92, 5710–5715 (1988)

    Article  Google Scholar 

  38. L.R. Williams, D.R. Crosley, J. Chem. Phys. 104, 6507–6514 (1996)

    Article  ADS  Google Scholar 

  39. D.R. Bates, Planet. Space Sci. 32, 785–790 (1984)

    Article  ADS  Google Scholar 

  40. A. Bucholtz, Appl. Opt. 34, 2765–2773 (1995)

    Article  ADS  Google Scholar 

  41. P.M. Doherty, D.R. Crosley, Appl. Opt. 23, 713–721 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. Air Force Office of Scientific Research MURI “Fundamental Aspects of Plasma Assisted Combustion” Chiping Li—Technical Monitor. The authors would also like to thank the LASKIN group for providing the software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyao Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Z., Carter, C.D. & Lempert, W.R. Effects of signal corrections on measurements of temperature and OH concentrations using laser-induced fluorescence. Appl. Phys. B 117, 707–721 (2014). https://doi.org/10.1007/s00340-014-5886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5886-y

Keywords

Navigation