Skip to main content
Log in

Recent advances in room temperature single-photon emitters

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Considering the ever-increasing growth of quantum technology and the expansion of its applications into non-laboratory environments, usability at room temperature is becoming more and more critical in these systems. Generating the quantum particle is the first block of a quantum system, and the need to produce stable, indistinguishable, and isolated quantum particles requires extensive studies in these areas. Photons have a quantum nature, exhibit a high coherence time, and are extremely isolated from the surrounding environment; hence, they can be used in higher temperature and approximately room temperature environments, contrary to single atoms, ions, and superconductors. Photons emitted from classical and thermal [light] sources such as lamps and coherent sources like lasers are emitted as clusters and in a random manner, respectively. On the other hand, single-photon emitters have a non-classical nature and are able to provide the necessary quantum particles required for telecommunication and quantum processing. The emitter should perform at room temperature and maintain its stability and emission rate similar to how it performs in lower temperatures to increase its efficiency and facilitate non-experimental applications. Furthermore, the emitter should be minorly influenced by thermal phonons, and the emission wavelength must be stable. Fashioning such single-photon emitters requires special methods and comes with a set of challenges, which are discussed in this article. Firstly, their history, principles, characterizing parameters, and the measuring approaches related to these sources are discussed; afterward, different materials and structures with optimal emission capabilities are investigated and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Carroll, S.: Dark matter, dark energy: the dark side of the universe. vol. 2, 7 Teaching Company (2007)

  2. Joos, G.: Theoretical Physics. Blackie and Son Limited, London and Glasgow (1951)

    MATH  Google Scholar 

  3. Fox, M.: Quantum Optics an Introduction. Oxford University Press, London (2006)

    MATH  Google Scholar 

  4. MohammadNejad, S. and Taherkhani, M.: Principals of quantum electronics and optical quantum computation. IUST publication (2012)

  5. Kimble, H.J., Dagenais, M., Mandel, L.: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977)

    ADS  Google Scholar 

  6. Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    ADS  Google Scholar 

  7. Schumacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738–2747 (1995)

    ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H. and Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing. India. p. 175 (1984)

  9. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science (1994)

  10. Yin, J., et al.: Satellite-based entanglement distribution over 1200 kilometers. Science 356(6343), 1140–1144 (2017)

    Google Scholar 

  11. Northup, T.E., Blatt, R.: Quantum information transfer using photons. Nat. Photon. 8, 356–363 (2014)

    ADS  Google Scholar 

  12. Nilsson, J., et al.: Quantum teleportation using a light-emitting diode. Nat. Photon. 7, 311–315 (2013)

    ADS  Google Scholar 

  13. Kok, P., et al.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    ADS  Google Scholar 

  14. MohammadNejad, S., KhodadadKashi, A.: CNOT-based quantum swapping of polarization and modal encoded qubits in photonic Ti:LiNbO3 channel waveguides. Opt. Quant. Electron. 51(9), 301 (2019)

    Google Scholar 

  15. MohammadNejad, S., KhodadadKashi, A., Arab, H.: Single- and two-qubit universal quantum gates in photonic Ti:LiNbO3 circuits. Optik 182, 907–921 (2019)

    ADS  Google Scholar 

  16. MohammadNejad, S., KhodadadKashi, A.: Realization of quantum SWAP gate using photonic integrated passive and electro-optically active components. Fiber Integr. Opt. 38(2), 117–136 (2019)

    ADS  Google Scholar 

  17. Taherkhani, M., Mohammadnejad, S.: Degenerate entangled photon pairs source based on PPLN waveguide for quantum computation. Opt. Quant. Electron. 45(11), 1167–1177 (2013)

    Google Scholar 

  18. Aharonovich, I., Englund, D., Toth, M.: Solid-state single-photon emitters. Nat. Photo. 10(10), 631 (2016)

    ADS  Google Scholar 

  19. O’brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photon. 3(12), 687 (2009)

    ADS  Google Scholar 

  20. Gisin, N., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    ADS  MATH  Google Scholar 

  21. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012)

    Google Scholar 

  22. Harris, N.C., et al.: Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017)

    ADS  Google Scholar 

  23. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014)

    ADS  Google Scholar 

  24. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    ADS  MATH  Google Scholar 

  25. Lombardi, E., et al.: Teleportation of a vacuum–one-photon qubit. Phys. Rev. Lett. 88(7), 070402 (2002)

    ADS  Google Scholar 

  26. Fattal, D., et al.: Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source. Phys. Rev. Lett. 92(3), 037903 (2004)

    ADS  Google Scholar 

  27. Pan, J.W., et al.: Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature 403(6769), 515–519 (2000)

    ADS  Google Scholar 

  28. Xiao, M., Wu, L.-A., Kimble, H.J.: Precision measurement beyond the shot-noise limit. Phys. Rev. Lett. 59(3), 278–281 (1987)

    ADS  Google Scholar 

  29. Polzik, E.S., Carri, J., Kimble, H.J.: Spectroscopy with squeezed light. Phys. Rev. Lett. 68(20), 3020–3023 (1992)

    ADS  Google Scholar 

  30. Ekert, K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. The Eur. Phys. J. D 41(3), 599 (2007)

    ADS  Google Scholar 

  32. Gottesman, D., et al.: Security of quantum key distribution with imperfect devices. Quant. Info. Comput. 4(5), 325–360 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595–604 (2014)

    ADS  Google Scholar 

  34. Sangouard, N., et al.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33–80 (2011)

    ADS  Google Scholar 

  35. Sangouard, N., et al.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77(6), 062301 (2008)

    ADS  Google Scholar 

  36. Rarity, J.G., Owens, P.C.M., Tapster, P.R.: Quantum random-number generation and key sharing. J. Mod. Opt. 41(12), 2435–2444 (1994)

    ADS  Google Scholar 

  37. Senellart, P., Solomon, G., White, A.: High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12(11), 1026–1039 (2017)

    ADS  Google Scholar 

  38. Schweickert, L., et al.: On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5020038

    Article  Google Scholar 

  39. Bogdanov, S.I., et al.: Ultrabright room-temperature sub-nanosecond emission from single nitrogen-vacancy centers coupled to nanopatch antennas. Nano Lett. 18(8), 4837–4844 (2018)

    ADS  Google Scholar 

  40. Aoki, T., et al.: Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)

    ADS  Google Scholar 

  41. Hijlkema, M., et al.: A single-photon server with just one atom. Nat. Phys. 3(4), 253 (2007)

    Google Scholar 

  42. Keller, M., et al.: Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431(7012), 1075–1078 (2004)

    ADS  Google Scholar 

  43. Barros, H., et al.: Deterministic single-photon source from a single ion. New J. Phys. (2009). https://doi.org/10.1088/1367-2630/11/10/103004

    Article  Google Scholar 

  44. Diedrich, F., Walther, H.: Nonclassical radiation of a single stored ion. Phys. Rev. Lett. 58(3), 203–206 (1987)

    ADS  Google Scholar 

  45. Maurer, C., et al.: A single-photon source based on a single Ca+ ion. New J. Phys. 6(1), 94 (2004)

    ADS  Google Scholar 

  46. Kurtsiefer, C., et al.: Stable solid-state source of single photons. Phys. Rev. Lett. 85(2), 290–293 (2000)

    ADS  Google Scholar 

  47. Brouri, R., et al.: Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25(17), 1294–1296 (2000)

    ADS  Google Scholar 

  48. Hsu, J.-H., et al.: Nonblinking green emission from single H3 color centers in nanodiamonds. Appl. Phys. Lett. 98(19), 193116 (2011)

    ADS  Google Scholar 

  49. Bock, M., et al.: Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt. Express 24(21), 23992–24001 (2016)

    ADS  Google Scholar 

  50. Lerch, S., et al.: Tuning curve of type-0 spontaneous parametric down-conversion. J. Opt. Soc. Am. B 30(4), 953–958 (2013)

    ADS  Google Scholar 

  51. Kwiat, P.G., et al.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75(24), 4337–4341 (1995)

    ADS  Google Scholar 

  52. Cardoso, G.C., Tabosa, J.W.R.: Four-wave mixing in dressed cold cesium atoms. Opt. Commun. 185(4), 353–358 (2000)

    ADS  Google Scholar 

  53. Fan, B., et al.: Generation of a single-photon source via a four-wave mixing process in a cavity. Phys. Rev. A 80(6), 063809 (2009)

    ADS  Google Scholar 

  54. Kitson, S.C., et al.: Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity. Phys. Rev. A 58(1), 620–627 (1998)

    ADS  Google Scholar 

  55. De Martini, F., Di Giuseppe, G., Marrocco, M.: Single-mode generation of quantum photon states by excited single molecules in a microcavity trap. Phys. Rev. Lett. 76(6), 900–903 (1996)

    ADS  Google Scholar 

  56. Basché, T., et al.: Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. Phys. Rev. Lett. 69(10), 1516–1519 (1992)

    ADS  Google Scholar 

  57. Castelletto, S., et al.: A silicon carbide room-temperature single-photon source. Nat. Mater. 13(2), 151–156 (2014)

    ADS  Google Scholar 

  58. Ma, X., et al.: Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol. 10(8), 671–675 (2015)

    ADS  Google Scholar 

  59. He, X., et al.: Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photon. 11, 577–582 (2017)

    Google Scholar 

  60. Chung, K., et al.: Room-temperature single-photon emission from zinc oxide nanoparticle defects and their in vitro photostable intrinsic fluorescence. Nanophotonics 6(1), 269–278 (2017)

    Google Scholar 

  61. Grosso, G., et al.: Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8(1), 705 (2017)

    ADS  Google Scholar 

  62. Berhane, A.M., et al.: Bright room-temperature single-photon emission from defects in gallium nitride. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605092

    Article  Google Scholar 

  63. Lin, X., et al.: Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nat. Commun. 8(1), 1132 (2017)

    ADS  Google Scholar 

  64. Wang, J., et al.: Bright room temperature single photon source at telecom range in cubic silicon carbide. Nat. Commun. 9(1), 4106 (2018)

    ADS  Google Scholar 

  65. Chung, K., et al.: Room-temperature single-photon emitters in titanium dioxide optical defects. Beilstein J. Nanotechnol. 9, 1085–1094 (2018)

    Google Scholar 

  66. Zhao, S., et al.: Single photon emission from graphene quantum dots at room temperature. Nat. Commun. 9(1), 3470 (2018)

    ADS  Google Scholar 

  67. Ripka, F., et al.: A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science 362(6413), 446–449 (2018)

    ADS  Google Scholar 

  68. Zhou, Y., et al.: Room temperature solid-state quantum emitters in the telecom range. Sci. Adv. 4(3), eaar580 (2018)

    Google Scholar 

  69. Tamariz, S., et al.: Toward bright and pure single photon emitters at 300 K based on GaN quantum dots on silicon. ACS Photon. 7, 1515–1522 (2020)

    Google Scholar 

  70. Castelletto, S.A., Scholten, R.E.: Heralded single photon sources: a route towards quantum communication technology and photon standards. Eur. Phys. J. Appl. Phys. 41(3), 181–194 (2008)

    ADS  Google Scholar 

  71. Lounis, B., Orrit, M.: Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005)

    ADS  Google Scholar 

  72. Yao, P., Manga Rao, V.S.C., Hughes, S.: On-chip single photon sources using planar photonic crystals and single quantum dots. Laser Photon. Rev. 4(4), 499–516 (2010)

    ADS  Google Scholar 

  73. Kuhn, A., Ljunggren, D.: Cavity-based single-photon sources. Contemp. Phys. 51(4), 289–313 (2010)

    ADS  Google Scholar 

  74. Oxborrow, M., Sinclair, A.G.: Single-photon sources. Contemp. Phys. 46(3), 173–206 (2005)

    ADS  Google Scholar 

  75. Christopher, J.C., et al.: Metrology of single-photon sources and detectors: a review. Opt. Eng. 53(8), 1–17 (2014)

    Google Scholar 

  76. Eisaman, M.D., et al.: Invited review article: single-photon sources and detectors. Rev Sci Instrum 82(7), 071101 (2011)

    ADS  Google Scholar 

  77. Zhou, Y., et al.: Room temperature solid-state quantum emitters in the telecom range. Sci. Adv. 4(3), 3580 (2018)

    ADS  Google Scholar 

  78. Lohrmann, A., et al.: A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80(3), 034502 (2017)

    ADS  Google Scholar 

  79. Shields, A.J.: Semiconductor quantum light sources. Nat. Photon. 1, 215–223 (2007)

    ADS  Google Scholar 

  80. Emary, C., et al.: Bunching and antibunching in electronic transport. Phys. Rev. B 85(16), 165417 (2012)

    ADS  Google Scholar 

  81. Walls, D.F., Milburn, G.J., Optics, Q.: Berlin. Springer, Heidelberg (1994)

    Google Scholar 

  82. Bachor, H.A., Ralph, T.C.: A guide to experiments in quantum optics. 2 ed., Weinheim: Wiley (1998)

  83. Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4(7), 205–207 (1979)

    ADS  Google Scholar 

  84. Waks, E., Diamanti, E., Yamamoto, Y.: Generation of photon number states. New J. Phys. 8, 4–4 (2006)

    ADS  Google Scholar 

  85. Soujaeff, A., et al.: Quantum key distribution at 1550 nm using a pulse heralded single photon source. Opt. Express 15(2), 726–734 (2007)

    ADS  Google Scholar 

  86. U’Ren, A.B., et al.: Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. Phys. Rev. Lett. 93(9), 093601 (2004)

    ADS  Google Scholar 

  87. Fan, J., Migdall, A.: A broadband high spectral brightness fiber-based two-photon source. Opt. Express 15(6), 2915–2920 (2007)

    ADS  Google Scholar 

  88. Goldschmidt, E.A., et al.: Spectrally bright and broad fiber-based heralded single-photon source. Phys. Rev. A 78(1), 013844 (2008)

    ADS  Google Scholar 

  89. Goldschmidt, E.A., et al.: Quantum Optics. Cambridge University Press (1997)

  90. Grünwald, P.: Effective second-order correlation function and single-photon detection. New J. Phys. 21(9), 093003 (2019)

    ADS  MathSciNet  Google Scholar 

  91. Li, L., et al.: Efficient photon collection from a nitrogen vacancy center in a circular bullseye grating. Nano Lett. 15(3), 1493–1497 (2015)

    ADS  Google Scholar 

  92. Mouradian, S.L., et al.: Scalable integration of long-lived quantum memories into a photonic circuit. Phys. Rev. X 5(3), 031009 (2015)

    Google Scholar 

  93. Michelson, A.A., Pease, F.G.: Measurement of the diameter of α orionis with the interferometer. Astrophys. J. 53, 249–259 (1921)

    ADS  Google Scholar 

  94. Brown, R.H., Twiss, R.Q.: LXXIV. A new type of interferometer for use in radio astronomy. The Lond. Edinb Dublin Philos. Mag. J. Sci. 45(366), 663–682 (1954)

    Google Scholar 

  95. Brown, R.H., Twiss, R.Q.: Correlation between photons in two coherent beams of light. Nature 177(4497), 27–29 (1956)

    ADS  Google Scholar 

  96. Madar, R.: Silicon carbide in contention. Nature 430(7003), 974–975 (2004)

    ADS  Google Scholar 

  97. Yamada, S., et al.: Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths. Appl. Phys. Lett. 99(20), 201102 (2011)

    ADS  Google Scholar 

  98. Fan, J., et al.: 3C–SiC nanocrystals as fluorescent biological labels. Small 4(8), 1058–1062 (2008)

    Google Scholar 

  99. Beke, D., et al.: Silicon carbide quantum dots for bioimaging. J. Mater. Res. 28(2), 205–209 (2013)

    ADS  Google Scholar 

  100. Gali, A.: Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory. J. Mater. Res. 27(6), 897–909 (2012)

    ADS  Google Scholar 

  101. Weber, J.R., et al.: Quantum computing with defects. Proc. Natl. Acad. Sci. 107(19), 8513–8518 (2010)

    ADS  Google Scholar 

  102. Koehl, W.F., et al.: Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479(7371), 84–87 (2011)

    ADS  Google Scholar 

  103. Baranov, P.G., et al.: Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 83(12), 125203 (2011)

    ADS  Google Scholar 

  104. Falk, A.L., et al.: Polytype control of spin qubits in silicon carbide. Nat. Commun. 4(1), 1819 (2013)

    ADS  Google Scholar 

  105. Widmann, M., et al.: Coherent control of single spins in silicon carbide at room temperature. Nat. Mater. 14(2), 164–168 (2015)

    ADS  Google Scholar 

  106. Fuchs, F., et al.: Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6(1), 7578 (2015)

    ADS  Google Scholar 

  107. Wang, J., et al.: Efficient generation of an array of single silicon-vacancy defects in silicon carbide. Phys. Rev. Appl. 7(6), 064021 (2017)

    ADS  Google Scholar 

  108. Radulaski, M., et al.: Scalable quantum photonics with single color centers in silicon carbide. Nano Lett. 17(3), 1782–1786 (2017)

    ADS  Google Scholar 

  109. Lienhard, B., et al.: Bright and photostable single-photon emitter in silicon carbide. Optica 3(7), 768–774 (2016)

    ADS  Google Scholar 

  110. Christle, D.J., et al.: Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14(2), 160–163 (2015)

    ADS  Google Scholar 

  111. Christle, D.J., et al.: Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7(2), 021046 (2017)

    Google Scholar 

  112. Aharonovich, I., et al.: Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B 81, 1–4 (2010)

    Google Scholar 

  113. Aharonovich, I., et al.: Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9(9), 3191–3195 (2009)

    ADS  Google Scholar 

  114. Neu, E., et al.: Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium. New J. Phys. 13(2), 025012 (2011)

    ADS  Google Scholar 

  115. Ikeda, N., et al.: GaN power transistors on si substrates for switching applications. Proc. IEEE 98(7), 1151–1161 (2010)

    Google Scholar 

  116. Matocha, K., Chow, T.P., Gutmann, R.J.: High-voltage normally off GaN MOSFETs on sapphire substrates. IEEE Trans. Electron Dev. 52(1), 6–10 (2005)

    ADS  Google Scholar 

  117. Krames, M.R., et al.: Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3(2), 160–175 (2007)

    ADS  Google Scholar 

  118. Nakamura, S., et al.: High-power, long-lifetime InGaN/GaN/AlGaN-based laser diodes grown on pure GaN substrates. Jpn. J. Appl. Phys. 37, L309–L312 (1998)

    Google Scholar 

  119. Mohammad, S.N., Salvador, A.A., Morkoc, H.: Emerging gallium nitride based devices. Proc. IEEE 83(10), 1306–1355 (1995)

    Google Scholar 

  120. Strite, S., Morkoç, H.: GaN, AlN, and InN: a review. J. Vacuum Sci.Technol. B: Microelectro. Nanometer Struct. Process. Measur. Phenom 10(4), 1237–1266 (1992)

    ADS  Google Scholar 

  121. Angerer, W.E., et al.: Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire. Phys. Rev. B 59(4), 2932–2946 (1999)

    ADS  Google Scholar 

  122. Bernardini, F., Fiorentini, V., Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B 56(16), R10024–R10027 (1997)

    ADS  Google Scholar 

  123. Rebane, Y.T., Shreter, Y.G., Albrecht, M.: Stacking faults as quantum wells for excitons in Wurtzite GaN. Physica Status Solidi (a) 164(1), 141–144 (1997)

    ADS  Google Scholar 

  124. Iwata, H.P., et al.: Effective masses of two-dimensional electron gases around cubic inclusions in hexagonal silicon carbide. Phys. Rev. B 68(24), 245309 (2003)

    ADS  Google Scholar 

  125. Brillson, L.J., et al.: Defect formation near GaN surfaces and interfaces. Physica B 273–274, 70–74 (1999)

    ADS  Google Scholar 

  126. Aharonovich, I., et al.: Enhanced single-photon emission in the near infrared from a diamond color center. Phys. Rev. B 79(23), 235316 (2009)

    ADS  Google Scholar 

  127. Fedyanin, D.Y., Agio, M.: Ultrabright single-photon source on diamond with electrical pumping at room and high temperatures. New J. Phys. 18(7), 073012 (2016)

    ADS  Google Scholar 

  128. Mildren, R.P., Butler, J.E., Rabeau, J.R.: CVD-diamond external cavity Raman laser at 573 nm. Opt. Express 16(23), 18950–18955 (2008)

    ADS  Google Scholar 

  129. Riedrich-Möller, J., et al.: One- and two-dimensional photonic crystal microcavities in single crystal diamond. Nat. Nanotechnol. 7(1), 69–74 (2012)

    ADS  Google Scholar 

  130. Neu, E. and Becher, C.: 6 - Diamond-based single-photon sources and their application in quantum key distribution, in Quantum Information Processing with Diamond, S. Prawer and I. Aharonovich, Editors. Woodhead Publishing, pp. 127–159 (2014)

  131. Smith, J.M., et al.: Optical properties of a single-colour centre in diamond with a green zero-phonon line. New J. Phys. 13(4), 045005 (2011)

    ADS  Google Scholar 

  132. Beveratos, A., et al.: Nonclassical radiation from diamond nanocrystals. Phys. Rev. A 64(6), 061802 (2001)

    ADS  Google Scholar 

  133. Neu, E., Agio, M., Becher, C.: Photophysics of single silicon vacancy centers in diamond: implications for single photon emission. Opt. Express 20(18), 19956–19971 (2012)

    ADS  Google Scholar 

  134. Wu, E., et al.: Narrow-band single-photon emission in the near infrared for quantum key distribution. Opt. Express 14(3), 1296–1303 (2006)

    ADS  Google Scholar 

  135. Castelletto, S., Boretti, A.: Radiative and nonradiative decay rates in chromium-related centers in nanodiamonds. Opt. Lett. 36(21), 4224–4226 (2011)

    ADS  Google Scholar 

  136. Dean, C.R., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722–726 (2010)

    ADS  Google Scholar 

  137. Vázquez de Parga, A. L. and Miranda, R.: 14 - Scanning tunneling microscopy (STM) of graphene, in Graphene (Second Edition), V. Skakalova and A. B. Kaiser (Eds.), Woodhead Publishing, pp. 345–379 (2021)

  138. Bonifacio, L. D., Lotsch, B. V. and Ozin, G. A.: 5.04 - Periodic Mesoporous Materials: Holes Filled with Opportunities, in Comprehensive Nanoscience and Technology, D. L. Andrews, G. D. Scholes, and G. P. Wiederrecht (Eds.), Academic Press: Amsterdam. pp. 69–125 (2011)

  139. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499(7459), 419–425 (2013)

    Google Scholar 

  140. Roldán, R., et al.: Strain engineering in semiconducting two-dimensional crystals. J. Phys.: Condens. Matter 27(31), 313201 (2015)

    Google Scholar 

  141. Srivastava, A., et al.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10(6), 491–496 (2015)

    ADS  Google Scholar 

  142. Tran, T.T., et al.: Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11(1), 37–41 (2016)

    ADS  MathSciNet  Google Scholar 

  143. Tran, T.T., et al.: Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10(8), 7331–7338 (2016)

    Google Scholar 

  144. Weir, A., et al.: Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46(4), 2242–2250 (2012)

    ADS  Google Scholar 

  145. Bozzi, A., et al.: Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation. J. Photochem. Photobiol., A 174(2), 156–164 (2005)

    Google Scholar 

  146. Braun, J.H., Baidins, A., Marganski, R.E.: TiO2 pigment technology: a review. Prog. Org. Coat. 20(2), 105–138 (1992)

    Google Scholar 

  147. Wang, Z., Helmersson, U., Käll, P.-O.: Optical properties of anatase TiO2 thin films prepared by aqueous sol–gel process at low temperature. Thin Solid Films 405(1), 50–54 (2002)

    ADS  Google Scholar 

  148. Subramania, G., et al.: Nano-lithographically fabricated titanium dioxide based visible frequency three dimensional gap photonic crystal. Opt. Express 15(20), 13049–13057 (2007)

    ADS  Google Scholar 

  149. Furuhashi, M., et al.: Development of microfabricated TiO2 channel waveguides. AIP Adv. 1(3), 032102 (2011)

    ADS  Google Scholar 

  150. Bradley, J.D.B., et al.: Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. Opt. Express 20(21), 23821–23831 (2012)

    ADS  Google Scholar 

  151. Choy, J.T., et al.: Integrated TiO2 resonators for visible photonics. Opt. Lett. 37(4), 539–541 (2012)

    ADS  Google Scholar 

  152. Paunoiu, A., Moirangthem, R.S., Erbe, A.: Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation. Physica Status Solidi (RRL) Rapid Res. Lett. 9(4), 241–244 (2015)

    ADS  Google Scholar 

  153. Reshef, O., et al.: Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient. J. Opt. Soc. Am. B 32(11), 2288–2293 (2015)

    ADS  Google Scholar 

  154. Jin, C., et al.: Structure and photoluminescence of the TiO2 films grown by atomic layer deposition using tetrakis-dimethylamino titanium and ozone. Nanosc. Res. Lett. 10(1), 95 (2015)

    ADS  Google Scholar 

  155. Knorr, F.J., Zhang, D., McHale, J.L.: Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2. Langmuir 23(17), 8686–8690 (2007)

    Google Scholar 

  156. Mercado, C., et al.: Photoluminescence of dense nanocrystalline titanium dioxide thin films: effect of doping and thickness and relation to gas sensing. ACS Appl. Mater. Interfaces. 3(7), 2281–2288 (2011)

    Google Scholar 

  157. Morfa, A.J., et al.: Single-photon emission and quantum characterization of zinc oxide defects. Nano Lett. 12(2), 949–954 (2012)

    ADS  Google Scholar 

  158. Subramania, G., et al.: Log-pile TiO2 photonic crystal for light control at near-UV and visible wavelengths. Adv. Mater. 22(4), 487–491 (2010)

    Google Scholar 

  159. Park, J., et al.: Titanium dioxide whispering gallery microcavities. Adv. Opt. Mater. 2(8), 711–717 (2014)

    Google Scholar 

  160. Evans, C.C., Liu, C., Suntivich, J.: Low-loss titanium dioxide waveguides and resonators using a dielectric lift-off fabrication process. Opt. Express 23(9), 11160–11169 (2015)

    ADS  Google Scholar 

  161. Khalid, A., et al.: Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification. Sci. Rep. 5(1), 11179 (2015)

    ADS  MathSciNet  Google Scholar 

  162. Awschalom, D., et al.: Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quant. 2(1), 017002 (2021)

    Google Scholar 

  163. Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photon. 13(3), 158–169 (2019)

    ADS  Google Scholar 

  164. Gallacher, K., et al.: Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. APL Photon. 7(4), 046101 (2022)

    Google Scholar 

  165. Taballione, C., et al.: 8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides. Opt. Express 27(19), 26842–26857 (2019)

    ADS  Google Scholar 

  166. Smith, J., et al.: Single photon emission and single spin coherence of a nitrogen vacancy center encapsulated in silicon nitride. Appl. Phys. Lett. 116(13), 134001 (2020)

    ADS  Google Scholar 

  167. Senichev, A., et al.: Silicon nitride waveguides with intrinsic single-photon emitters for integrated quantum photonics. ACS Photon. 9(10), 3357–3365 (2022)

    Google Scholar 

  168. Lee, J.W., et al.: Low temperature silicon nitride and silicon dioxide film processing by inductively coupled plasma chemical vapor deposition. J. Electrochem. Soc. 147(4), 1481 (2000)

    ADS  Google Scholar 

  169. Senichev, A., et al.: Room-temperature single-photon emitters in silicon nitride. Sci. Adv. 7(50), 0627 (2021)

    ADS  Google Scholar 

  170. Koppe, T., Hofsäss, H., Vetter, U.: Overview of band-edge and defect related luminescence in aluminum nitride. J. Lumin. 178, 267–281 (2016)

    Google Scholar 

  171. Xiong, C., Pernice, W.H.P., Tang, H.X.: Low-Loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. Nano Lett. 12(7), 3562–3568 (2012)

    ADS  Google Scholar 

  172. Maity, S., et al.: Coherent acoustic control of a single silicon vacancy spin in diamond. Nat. Commun. 11(1), 193 (2020)

    ADS  Google Scholar 

  173. Varley, J.B., Janotti, A., Van de Walle, C.G.: Defects in AlN as candidates for solid-state qubits. Phys. Rev. B 93(16), 161201 (2016)

    ADS  Google Scholar 

  174. Seo, H., Govoni, M., Galli, G.: Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies. Sci. Rep. 6(1), 20803 (2016)

    ADS  Google Scholar 

  175. Xue, Y., et al.: Single-photon emission from point defects in aluminum nitride films. The J. Phys. Chem. Lett. 11(7), 2689–2694 (2020)

    Google Scholar 

  176. Lu, T.-J., et al.: Bright high-purity quantum emitters in aluminum nitride integrated photonics. ACS Photon. 7(10), 2650–2657 (2020)

    Google Scholar 

  177. Özgür, Ü., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)

    ADS  Google Scholar 

  178. Xiong, H.-M.: ZnO nanoparticles applied to bioimaging and drug delivery. Adv. Mater. 25(37), 5329–5335 (2013)

    Google Scholar 

  179. Jagadish, C., Pearton, S.J.: Zinc oxide bulk, thin films and nanostructures: processing, properties, and applications. Oxford, UK: Elsevier (2011)

  180. Amekura, H., et al.: Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation. Appl. Phys. Lett. 87(1), 013109 (2005)

    ADS  Google Scholar 

  181. Liu, Y.X., et al.: Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. Solid State Commun. 121(9–10), 531–536 (2002)

    ADS  Google Scholar 

  182. Kim, K.H., Park, K.C., Ma, D.Y.: Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81(12), 7764–7772 (1997)

    ADS  Google Scholar 

  183. Ko, H.J., et al.: Photoluminescence properties of ZnO epilayers grown on CaF2(111) by plasma assisted molecular beam epitaxy. Appl. Phys. Lett. 76(14), 1905–1907 (2000)

    ADS  Google Scholar 

  184. Kato, H.S., et al.: Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. J. Cryst. Growth 237, 538–543 (2002)

    ADS  Google Scholar 

  185. Wu, J.J., Liu, S.C.: Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14(3), 215–218 (2002)

    MathSciNet  Google Scholar 

  186. Tam, K.H., et al.: Defects in ZnO nanorods prepared by a hydrothermal method. J. Phys. Chem. B 110(42), 20865–20871 (2006)

    Google Scholar 

  187. Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15(5), 464–466 (2003)

    Google Scholar 

  188. Wang, Z.L., Kong, X.Y., Zuo, J.M.: Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 91(18), 185502 (2003)

    ADS  Google Scholar 

  189. Meulenkamp, E.A.: Synthesis and Growth of ZnO Nanoparticles. J. Phys. Chem. B 102(29), 5566–5572 (1998)

    Google Scholar 

  190. Amekura, H., et al.: Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence. Appl. Phys. Lett. 88(15), 153119 (2006)

    ADS  Google Scholar 

  191. Yang, Q., et al.: Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route. Appl. Phys. A 79(8), 1847–1851 (2004)

    ADS  Google Scholar 

  192. Wang, Z.G., et al.: Green luminescence originates from surface defects in ZnO nanoparticles. Physica E 35(1), 199–202 (2006)

    ADS  MathSciNet  Google Scholar 

  193. Lin, B., Fu, Z., Jia, Y.: Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79(7), 943–945 (2001)

    ADS  Google Scholar 

  194. Chen, Z., et al.: Effect of N2 flow rate on morphology and structure of ZnO nanocrystals synthesized via vapor deposition. Scripta Mater. 52(1), 63–67 (2005)

    Google Scholar 

  195. Ng, H.T., et al.: Optical properties of single-crystalline ZnO nanowires on m-sapphire. Appl. Phys. Lett. 82(13), 2023–2025 (2003)

    ADS  Google Scholar 

  196. Meng, X.Q., et al.: The structural and optical properties of ZnO nanorod arrays. Solid State Commun. 135(3), 179–182 (2005)

    ADS  Google Scholar 

  197. Vanheusden, K., et al.: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79(10), 7983–7990 (1996)

    ADS  Google Scholar 

  198. Fabbri, F., et al.: Zn vacancy induced green luminescence on non-polar surfaces in ZnO nanostructures. Sci. Rep. 4, 5158 (2014)

    Google Scholar 

  199. Liu, X., et al.: Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95(6), 3141–3147 (2004)

    ADS  Google Scholar 

  200. McCluskey, M.D., Jokela, S.J.: Defects in ZnO. J. Appl. Phys. 106(7), 071101 (2009)

    ADS  Google Scholar 

  201. Reshchikov, M.A., et al.: Luminescence properties of defects in ZnO. Physica B 401–402, 358–361 (2007)

    ADS  Google Scholar 

  202. Greene, L.E., et al.: Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. Engl. 42(26), 3031–3034 (2003)

    Google Scholar 

  203. Studenikin, S.A., Golego, N., Cocivera, M.: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84(4), 2287–2294 (1998)

    ADS  Google Scholar 

  204. Chen, Y.N., et al.: Nature of red luminescence band in research-grade ZnO single crystals: a “self-activated” configurational transition. Appl. Phys. Lett. 105(4), 041912 (2014)

    ADS  Google Scholar 

  205. Kaftelen, H., et al.: EPR and photoluminescence spectroscopy studies on the defect structure of ZnO nanocrystals. Phys. Rev. B 86(1), 014113 (2012)

    ADS  Google Scholar 

  206. Choi, S., et al.: Single photon emission from ZnO nanoparticles. Appl. Phys. Lett. 104(26), 261101 (2014)

    ADS  Google Scholar 

  207. Chung, P.H., Perevedentseva, E., Cheng, C.L.: The particle size-dependent photoluminescence of nanodiamonds. Surf. Sci. 601(18), 3866–3870 (2007)

    ADS  Google Scholar 

  208. Mochalin, V.N., et al.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)

    ADS  Google Scholar 

  209. Babinec, T.M., et al.: A diamond nanowire single-photon source. Nat. Nanotechnol. 5(3), 195–199 (2010)

    ADS  Google Scholar 

  210. Hadden, J.P., et al.: Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97(24), 241901 (2010)

    ADS  Google Scholar 

  211. Riedel, D., et al.: Low-loss broadband antenna for efficient photon collection from a coherent spin in diamond. Phys. Rev. Appl. 2(6), 064011 (2014)

    ADS  Google Scholar 

  212. Pelton, M.: Modified spontaneous emission in nanophotonic structures. Nat. Photon. 9(7), 427–435 (2015)

    ADS  Google Scholar 

  213. Albrecht, R., et al.: Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity. Appl. Phys. Lett. 105(7), 073113 (2014)

    ADS  Google Scholar 

  214. Wolters, J., et al.: Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97(14), 141108 (2010)

    ADS  Google Scholar 

  215. Riedrich-Möller, J., et al.: Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond. Appl. Phys. Lett. 106(22), 221103 (2015)

    ADS  Google Scholar 

  216. Koenderink, A.F.: Single-photon nanoantennas. ACS Photon. 4(4), 710–722 (2017)

    MathSciNet  Google Scholar 

  217. Chikkaraddy, R., et al.: Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535(7610), 127–130 (2016)

    ADS  Google Scholar 

  218. Akselrod, G.M., et al.: Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photon. 8(11), 835–840 (2014)

    ADS  Google Scholar 

  219. Hoang, T.B., et al.: Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat. Commun. 6(1), 7788 (2015)

    ADS  MathSciNet  Google Scholar 

  220. Kuhn, A., Hennrich, M., Rempe, G.: Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89(6), 067901 (2002)

    ADS  Google Scholar 

  221. Shu, C., et al.: Subnatural-linewidth biphotons from a Doppler-broadened hot atomic vapour cell. Nat. Commun. 7(1), 12783 (2016)

    ADS  Google Scholar 

  222. Mohapatra, A.K., Jackson, T.R., Adams, C.S.: Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98(11), 113003 (2007)

    ADS  Google Scholar 

  223. Brus, L.E.: Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80(9), 4403–4409 (1984)

    ADS  Google Scholar 

  224. Ripka, F., et al.: Rydberg polaritons in a thermal vapor. Phys. Rev. A 93(5), 053429 (2016)

    ADS  Google Scholar 

  225. Kübler, H., et al.: Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photon. 4(2), 112–116 (2010)

    ADS  Google Scholar 

  226. Arab, H., et al.: Recent advances in nanowire quantum dot (NWQD) single-photon emitters. Quant. Inf. Process. 19(2), 44 (2019)

    ADS  Google Scholar 

  227. Mohammadnejad, S., Mahmoudi, A., Arab, H.: A new III–V nanowire-quantum dot single photon source with improved Purcell factor for quantum communication. Opt. Quant. Electron. 54(4), 220 (2022)

    Google Scholar 

  228. Bruchez, M., Jr., et al.: Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385), 2013–2016 (1998)

    ADS  Google Scholar 

  229. Peng, X.: An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2(6), 425–447 (2009)

    Google Scholar 

  230. Pu, C., et al.: Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 6(9), 652–670 (2013)

    Google Scholar 

  231. Nan, W., et al.: Crystal structure control of zinc-blende CdSe/CdS Core/Shell nanocrystals: synthesis and structure-dependent optical properties. J. Am. Chem. Soc. 134(48), 19685–19693 (2012)

    Google Scholar 

  232. Mizuochi, N., et al.: Electrically driven single-photon source at room temperature in diamond. Nat. Photonics 6(5), 299–303 (2012)

    ADS  Google Scholar 

  233. Nothaft, M., et al.: Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3(1), 628 (2012)

    ADS  Google Scholar 

  234. Lohrmann, A., et al.: Single-photon emitting diode in silicon carbide. Nat. Commun. 6(1), 7783 (2015)

    ADS  Google Scholar 

  235. Patel, R.B., et al.: Quantum interference of electrically generated single photons from a quantum dot. Nanotechnology 21(27), 274011 (2010)

    Google Scholar 

  236. Boretti, A., et al.: Electrically driven quantum light sources. Adv. Opt. Mater. 3(8), 1012–1033 (2015)

    Google Scholar 

  237. Nair, G., Zhao, J., Bawendi, M.G.: Biexciton quantum yield of single semiconductor nanocrystals from photon statistics. Nano Lett. 11(3), 1136–1140 (2011)

    ADS  Google Scholar 

  238. Callsen, G., et al.: Analysis of the exciton–LO-phonon coupling in single wurtzite GaN quantum dots. Phys. Rev. B 92(23), 235439 (2015)

    ADS  Google Scholar 

  239. Dou, X.M., et al.: Single-photon-emitting diode at liquid nitrogen temperature. Appl. Phys. Lett. 93(10), 101107 (2008)

    ADS  Google Scholar 

  240. Dusanowski, Ł, et al.: Single photon emission up to liquid nitrogen temperature from charged excitons confined in GaAs-based epitaxial nanostructures. Appl. Phys. Lett. 106(23), 233107 (2015)

    ADS  Google Scholar 

  241. Cavigli, L., et al.: High temperature single photon emitter monolithically integrated on silicon. Appl. Phys. Lett. 100(23), 231112 (2012)

    ADS  Google Scholar 

  242. Krummheuer, B., Axt, V.M., Kuhn, T.: Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots. Phys. Rev. B 65(19), 195313 (2002)

    ADS  Google Scholar 

  243. Rol, F., et al.: Probing exciton localization in nonpolar $\mathrm{Ga}\mathrm{N}∕\mathrm{Al}\mathrm{N}$ quantum dots by single-dot optical spectroscopy. Phys. Rev. B 75(12), 125306 (2007)

    ADS  Google Scholar 

  244. Holmes, M., et al.: Measurement of an exciton Rabi rotation in a single $\mathrm{GaN}/{\mathrm{Al}}_{x}{\mathrm{Ga}}_{1\ensuremath{-}x}\mathrm{N}$ nanowire-quantum dot using photoluminescence spectroscopy: evidence for coherent control. Phys. Rev. Lett. 111(5), 057401 (2013)

    ADS  Google Scholar 

  245. Holmes, M.J., et al.: Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14(2), 982–986 (2014)

    ADS  Google Scholar 

  246. Santori, C., et al.: Photon correlation studies of single GaN quantum dots. Appl. Phys. Lett. 87(5), 051916 (2005)

    ADS  Google Scholar 

  247. Kremling, S., et al.: Single photon emission from InGaN/GaN quantum dots up to 50 K. Appl. Phys. Lett. 100(6), 061115 (2012)

    ADS  Google Scholar 

  248. Jemsson, T., et al.: Polarized single photon emission and photon bunching from an InGaN quantum dot on a GaN micropyramid. Nanotechnology 26(6), 065702 (2015)

    ADS  Google Scholar 

  249. Wang, T., et al.: Polarisation-controlled single photon emission at high temperatures from InGaN quantum dots. Nanoscale 9(27), 9421–9427 (2017)

    Google Scholar 

  250. Cho, J.-H., et al.: Strongly coherent single-photon emission from site-controlled InGaN quantum dots embedded in GaN nanopyramids. ACS Photon. 5(2), 439–444 (2018)

    Google Scholar 

  251. Berhane, A.M., et al.: Bright room-temperature single-photon emission from defects in gallium nitride. Adv. Mater. 29(12), 1605092 (2017)

    Google Scholar 

  252. Holmes, M.J., et al.: Single photons from a hot solid-state emitter at 350 K. ACS Photon. 3(4), 543–546 (2016)

    Google Scholar 

  253. Hönig, G., et al.: Manifestation of unconventional biexciton states in quantum dots. Nat. Commun. 5(1), 5721 (2014)

    ADS  Google Scholar 

  254. Labeau, O., Tamarat, P., Lounis, B.: Temperature dependence of the luminescence lifetime of single $\mathrm{C}\mathrm{d}\mathrm{S}\mathrm{e}/\mathrm{Z}\mathrm{n}\mathrm{S}$ quantum dots. Phys. Rev. Lett. 90(25), 257404 (2003)

    ADS  Google Scholar 

  255. Roszak, K., et al.: Exciton spin decay in quantum dots to bright and dark states. Phys. Rev. B 76(19), 195324 (2007)

    ADS  Google Scholar 

  256. Vico Triviño, N., et al.: Integrated photonics on silicon with wide bandgap GaN semiconductor. Appl. Phys. Lett. 102(8), 081120 (2013)

    ADS  Google Scholar 

  257. Roland, I., et al.: Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon. Appl. Phys. Lett. 105(1), 011104 (2014)

    ADS  Google Scholar 

  258. Rousseau, I., et al.: Quantification of scattering loss of III-nitride photonic crystal cavities in the blue spectral range. Phys. Rev. B 95(12), 125313 (2017)

    ADS  Google Scholar 

  259. Grange, T., et al.: Reducing phonon-induced decoherence in solid-state single-photon sources with cavity quantum electrodynamics. Phys. Rev. Lett. 118(25), 253602 (2017)

    ADS  Google Scholar 

  260. Müllen, K.: Evolution of graphene molecules: structural and functional complexity as driving forces behind nanoscience. ACS Nano 8(7), 6531–6541 (2014)

    Google Scholar 

  261. Wu, J., Pisula, W., Müllen, K.: Graphenes as potential material for electronics. Chem. Rev. 107(3), 718–747 (2007)

    Google Scholar 

  262. Tomović, Ž, Watson, M.D., Müllen, K.: Superphenalene-based columnar liquid crystals. Angew. Chem. Int. Ed. 43(6), 755–758 (2004)

    Google Scholar 

  263. Debije, M.G., et al.: The optical and charge transport properties of discotic materials with large aromatic hydrocarbon cores. J. Am. Chem. Soc. 126(14), 4641–4645 (2004)

    Google Scholar 

  264. Yan, X., Cui, X., Li, L.-S.: Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132(17), 5944–5945 (2010)

    Google Scholar 

  265. Konishi, A., et al.: Synthesis and characterization of teranthene: a singlet biradical polycyclic aromatic hydrocarbon having Kekulé structures. J. Am. Chem. Soc. 132(32), 11021–11023 (2010)

    Google Scholar 

  266. Urade, A.R., Lahiri, I., Suresh, K.S.: Graphene properties, synthesis and applications: a review. JOM 75(3), 614–630 (2023)

    ADS  Google Scholar 

  267. Li, L., et al.: Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10), 4015–4039 (2013)

    ADS  Google Scholar 

  268. Bacon, M., Bradley, S.J., Nann, T.: Graphene quantum dots. Part. Part. Syst. Charact. 31(4), 415–428 (2014)

    Google Scholar 

  269. Xu, Q., et al.: Single-particle spectroscopic measurements of fluorescent graphene quantum dots. ACS Nano 7(12), 10654–10661 (2013)

    Google Scholar 

  270. Tan, Y.-Z., et al.: Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat. Commun. 4(1), 2646 (2013)

    ADS  Google Scholar 

  271. Miyazawa, T., et al.: Single-photon emission at 1.5 μm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities. Appl. Phys. Lett. 109(13), 132106 (2016)

    ADS  Google Scholar 

  272. Bachilo, S.M., et al.: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602), 2361–2366 (2002)

    ADS  Google Scholar 

  273. Avouris, P., Freitag, M., Perebeinos, V.: Carbon-nanotube photonics and optoelectronics. Nat. Photon. 2(6), 341–350 (2008)

    ADS  Google Scholar 

  274. Khasminskaya, S., et al.: Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photon. 10(11), 727–732 (2016)

    ADS  Google Scholar 

  275. Miura, R., et al.: Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 5(1), 5580 (2014)

    ADS  MathSciNet  Google Scholar 

  276. Jeantet, A., et al.: Widely tunable single-photon source from a carbon nanotube in the purcell regime. Phys. Rev. Lett. 116(24), 247402 (2016)

    ADS  Google Scholar 

  277. Zakharko, Y., et al.: Broadband tunable, polarization-selective and directional emission of (6,5) carbon nanotubes coupled to plasmonic crystals. Nano Lett. 16(5), 3278–3284 (2016)

    ADS  Google Scholar 

  278. Crochet, J.J., et al.: Disorder limited exciton transport in colloidal single-wall carbon nanotubes. Nano Lett. 12(10), 5091–5096 (2012)

    ADS  Google Scholar 

  279. Cognet, L., et al.: Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316(5830), 1465–1468 (2007)

    ADS  Google Scholar 

  280. Wang, F., et al.: Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70(24), 241403 (2004)

    ADS  Google Scholar 

  281. Högele, A., et al.: Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100(21), 217401 (2008)

    ADS  Google Scholar 

  282. Walden-Newman, W., Sarpkaya, I., Strauf, S.: Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 12(4), 1934–1941 (2012)

    ADS  Google Scholar 

  283. Hofmann, M.S., et al.: Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotechnol. 8(7), 502–505 (2013)

    ADS  Google Scholar 

  284. Ma, X., et al.: Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8(10), 10782–10789 (2014)

    Google Scholar 

  285. Miyauchi, Y., et al.: Brightening of excitons in carbon nanotubes on dimensionality modification. Nat. Photon. 7(9), 715–719 (2013)

    ADS  Google Scholar 

  286. Ghosh, S., et al.: Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330(6011), 1656–1659 (2010)

    ADS  Google Scholar 

  287. Ohring, M.: Materials Science of Thin Films. Elsevier (2001)

  288. Hartmann, N.F., et al.: Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes. Nanoscale 7(48), 20521–20530 (2015)

    ADS  Google Scholar 

  289. Piao, Y., et al.: Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat. Chem. 5(10), 840–845 (2013)

    Google Scholar 

  290. Sarpkaya, I., et al.: Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat. Commun. 4(1), 2152 (2013)

    ADS  Google Scholar 

  291. Hofmann, M.S., et al.: Ubiquity of exciton localization in cryogenic carbon nanotubes. Nano Lett. 16(5), 2958–2962 (2016)

    ADS  Google Scholar 

  292. Liu, X., et al.: Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy. Appl. Phys. Lett. 103(6), 061114 (2013)

    ADS  Google Scholar 

  293. Cui, G., Raymer, M.G.: Emission spectra and quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime. Phys. Rev. A 73(5), 053807 (2006)

    ADS  Google Scholar 

  294. Pettinari, G., et al.: A lithographic approach for quantum dot-photonic crystal nanocavity coupling in dilute nitrides. Microelectron. Eng. 174, 16–19 (2017)

    Google Scholar 

  295. Roy, C., Hughes, S.: Influence of electron–acoustic-phonon scattering on intensity power broadening in a coherently driven quantum-dot–cavity system. Phys. Rev. X 1(2), 021009 (2011)

    Google Scholar 

  296. Yalla, R., Hakuta, K.: Design and implementation of a tunable composite photonic crystal cavity on an optical nanofiber. Appl. Phys. B 126(11), 187 (2020)

    ADS  Google Scholar 

  297. Vitullo, D.L.P., et al.: Tunable SNAP microresonators via internal ohmic heating. Opt. Lett. 43(17), 4316–4319 (2018)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram MohammadNejad.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript, and there is no financial interest to report. We certify that this submission is the authors’ original work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 19 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MohammadNejad, S., Nosratkhah, P. & Arab, H. Recent advances in room temperature single-photon emitters. Quantum Inf Process 22, 360 (2023). https://doi.org/10.1007/s11128-023-04100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04100-3

Keywords

Navigation