Skip to main content
Log in

The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates the capability of the presented experimental approach. A systematic 2P-PEEM study on the dispersion relation of dielectric-loaded gold surfaces shows how effective the propagation of surface plasmon polaritons at a gold/para-hexaphenylene interface can be tuned by adjustment of the dielectric film thickness. Deviations of the experimental results from effective index calculations indicate the relevance of thin film peculiarities arising from the details of the growth process and corroborate the need of experimental analysis techniques for dispersion relation measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Ozbay, Science 311(5758), 189 (2006)

    Article  ADS  Google Scholar 

  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st edn. (Springer, Berlin/Heidelberg, 1988), pp. 4–7

  3. A. Politano, V. Formoso, G. Chiarello, Plasmonics 3(4), 165 (2008)

    Article  Google Scholar 

  4. K. Wang, D. Mittleman, Phys. Rev. Lett. 96(15), 157401 (2006)

    Article  ADS  Google Scholar 

  5. G. Schider, J. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. Aussenegg, W. Schaich, I. Puscasu, B. Monacelli, G. Boreman, Phys. Rev. B 68(15), 155427 (2003)

    Article  ADS  Google Scholar 

  6. M. Shibuta, T. Eguchi, A. Nakajima, Plasmonics 8(3), 1411–1415 (2013)

    Article  Google Scholar 

  7. T. Leißner, C. Lemke, J. Fiutowski, J.W. Radke, A. Klick, L. Tavares, J. Kjelstrup-Hansen, H.G. Rubahn, M. Bauer, Phys. Rev. Lett. 111(4), 46802 (2013)

    Article  ADS  Google Scholar 

  8. T. Leißner, C. Lemke, S. Jauernik, M. Müller, J. Fiutowski, L. Tavares, K. Thilsing-Hansen, J. Kjelstrup-Hansen, O. Magnussen, H.G. Rubahn, M. Bauer, Opt. Express 21(7), 8251 (2013)

    Article  ADS  Google Scholar 

  9. I.P. Radko, J. Fiutowski, L. Tavares, H.G. Rubahn, S.I. Bozhevolnyi, Opt. Express 19(16), 15155 (2011)

    Article  ADS  Google Scholar 

  10. F. Balzer, V. Bordo, A. Simonsen, H.G. Rubahn, Phys. Rev. B 67(11), 115408 (2003)

    Article  ADS  Google Scholar 

  11. W. Swiech, G. Fecher, C. Ziethen, O. Schmidt, G. Schönhense, K. Grzelakowski, C.M. Schneider, R. Frömter, H. Oepen, J. Kirschner, J. Electron Spectros. Relat. Phenomena. 84(1–3), 171 (1997)

    Article  Google Scholar 

  12. O. Schmidt, M. Bauer, C. Wiemann, R. Porath, M. Scharte, O. Andreyev, G. Schönhense, M. Aeschlimann, Appl. Phys. B Lasers Opt. 74(3), 223 (2002)

    Article  ADS  Google Scholar 

  13. L. Douillard, F. Charra, Z. Korczak, R. Bachelot, S. Kostcheev, G. Lerondel, P.M. Adam, P. Royer, Nano Lett. 8(3), 935 (2008)

    Article  ADS  Google Scholar 

  14. M. Cinchetti, A. Gloskovskii, S. Nepjiko, G. Schönhense, H. Rochholz, M. Kreiter, Phys. Rev. Lett. 95(4), 47601 (2005)

    Article  ADS  Google Scholar 

  15. C. Lemke, T. Leißner, S. Jauernik, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.G. Rubahn, M. Bauer, Opt. Express 20(12), 12877 (2012)

    Article  ADS  Google Scholar 

  16. F. Meyerzu Heringdorf, N. Buckanie, Microsc. Microanal. 16(S2), 502 (2010)

    Article  ADS  Google Scholar 

  17. T. Leißner, K. Thilsing-Hansen, C. Lemke, S. Jauernik, J. Kjelstrup-Hansen, M. Bauer, H.G. Rubahn, Plasmonics 7(2), 253 (2011)

    Article  Google Scholar 

  18. A. Kubo, N. Pontius, H. Petek, Nano Lett. 7(2), 470 (2007)

    Article  ADS  Google Scholar 

  19. R. Olmon, B. Slovick, T. Johnson, D. Shelton, S.H. Oh, G. Boreman, M. Raschke, Phys. Rev. B 86(23), 235147 (2012)

    Article  ADS  Google Scholar 

  20. P.B. Johnson, R.W. Christy, Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  21. L. Zhang, A. Kubo, L. Wang, H. Petek, T. Seideman, Phys. Rev. B 84(24), 245442 (2011)

    Article  ADS  Google Scholar 

  22. C. Lemke, C. Schneider, T. Leißner, D. Bayer, J.W. Radke, A. Fischer, P. Melchior, A.B. Evlyukhin, B.N. Chichkov, C. Reinhardt, M. Bauer, M. Aeschlimann, Nano Lett. 13(3), 1053 (2013)

    Article  ADS  Google Scholar 

  23. S.A. Nepijko, N.N. Sedov, G. Schönhense, M. Escher, X. Bao, W. Huang, Annalen Der Physik 9(6), 441 (2000)

    Article  ADS  Google Scholar 

  24. P. Lalanne, Surf. Sci. Rep. 64(10), 453 (2009)

    ADS  Google Scholar 

  25. T. Holmgaard, S. Bozhevolnyi, Phys. Rev. B 75(24), 245405 (2007)

    Article  ADS  Google Scholar 

  26. A. Niko, S. Tasch, F. Meghdadi, C. Brandstatter, G. Leising, C. Brandstätter, J. Appl. Phys. 82(9), 4177 (1997)

    Article  ADS  Google Scholar 

  27. V. Bordo, Phys. Rev. B 73(20), 205117 (2006)

    Article  ADS  Google Scholar 

  28. R.M. de Oliveira Hansen, J. Kjelstrup-Hansen, H.G. Rubahn, Nanoscale 2(1), 134 (2010)

    Article  ADS  Google Scholar 

  29. E. Zojer, M. Knupfer, R. Resel, F. Meghdadi, G. Leising, J. Fink, Phys. Rev. B 56(16), 10138 (1997)

    Article  ADS  Google Scholar 

  30. F. Träger (ed.), Springer Handbook of Lasers and Optics (Springer, New York, 2007)

    Google Scholar 

  31. R.F. Egerton, P. Li, M. Malac, Micron (Oxford, England, 1993) 35(6), 399 (2004)

Download references

Acknowledgements

Thanks go to Carsten Reinhardt from the Laserzentrum Hannover for helpful discussion. This work was funded by the German Research Foundation (DFG) through Priority Program 1391 "Ultrafast Nanooptics" as well as by the Danish Council for Independent Research (FTP project ANAP, contract No. 09-072949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Lemke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

AVI (3024 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemke, C., Leißner, T., Klick, A. et al. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Appl. Phys. B 116, 585–591 (2014). https://doi.org/10.1007/s00340-013-5737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5737-2

Keywords

Navigation