Skip to main content
Log in

Configuration Resonance and Generation Rate of Surface Plasmon Polaritons Excited by Semiconductor Quantum Dots near a Metal Surface

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We discuss particular features of generation of surface plasmon polaritons in a metal–dielectric planar interface that is coupled to semiconductor quantum dots by near-field interactions. As a model of working medium for performing numerical experiment, we use a gold metal surface onto which a polyethylene terephthalate film containing CdSe semiconductor spherical quantum dot is deposited. The problem of optimizing the radius of a quantum dot and its distance to a metal surface is solved for achieving the maximum transfer efficiency of the quantum dot energy for the generation of surface plasmon polaritons. Dispersion effects of the surface wave generation rate associated with deviations of the radius of quantum dots and their distance to the metal surface from the corresponding average values are taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. O. Keller, M. Xiao, and S. Bozhevolnyi, Surf. Sci. 280, 217 (1993). https://doi.org/10.1016/0039-6028(93)90370-Y

    Article  ADS  Google Scholar 

  2. M. Xiao, S. Bozhevolnyi, and O. Keller, Appl. Phys. A 62, 115 (1996). https://doi.org/10.1007/BF01575709

    ADS  Google Scholar 

  3. R. R. Chance, A. Prock, and R. Silbey, Molecular Fluorescence and Energy Transfer near Metal Interfaces, Vol. 37 of Advances in Chemical Physics, Ed. by I. Pri-gogine and S. A. Rice (Wiley, New York, 1978). https://doi.org/10.1002/9780470142561.ch1

  4. E. Kretschmann, Z. Phys. 241, 313 (1971). https://doi.org/10.1007/BF01395428

    Article  ADS  Google Scholar 

  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988). https://doi.org/10.1007/BFb0048317

    Book  Google Scholar 

  6. E. Kretschmann, Opt. Commun. 6, 185 (1972).

    Article  ADS  Google Scholar 

  7. D. Huang, M. Easter, G. Gumbs, A. A. Maradudin, S.‑Y. Lin, D. A. Cardimona, and X. Zhang, Opt. Express 22, 27576 (2014). https://doi.org/10.1364/OE.22.027576

    Article  ADS  Google Scholar 

  8. C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, J. Opt. Soc. Am. B 30, 2898 (2013). https://doi.org/10.1364/JOSAB.30.002898

    Article  ADS  Google Scholar 

  9. T. Erdogan, J. Opt. Soc. Am. A 14, 1760 (1997). https://doi.org/10.1364/JOSAA.14.001760

    Article  ADS  Google Scholar 

  10. J. Thomas, N. Jovanovic, R. G. Becker, G. D. Marshall, M. J. Withford, A. Tünnermann, S. Nolte, and M. Steel, Opt. Express 19, 325 (2011). https://doi.org/10.1364/OE.19.000325

    Article  ADS  Google Scholar 

  11. J. Albert, L. Y. Shao, and C. Caucheteur, Laser Photon. Rev. 7, 83 (2013). https://doi.org/10.1002/lpor.201100039

    Article  ADS  Google Scholar 

  12. Y. Y. Shevchenko and J. Albert, Opt. Lett. 32, 211 (2007). https://doi.org/10.1364/OL.32.000211

    Article  ADS  Google Scholar 

  13. W. H. Weber and C. F. Eagen, Opt. Lett. 4, 236 (1979). https://doi.org/10.1364/OL.4.000236

    Article  ADS  Google Scholar 

  14. W. L. Barnes, J. Mod. Opt. 45, 661 (1998). https://doi.org/10.1080/09500349808230614

    Article  ADS  Google Scholar 

  15. N. E. Khokhlov, D. O. Ignatyeva, and V. I. Belotelov, Opt. Express 22, 28019 (2014). https://doi.org/10.1364/OE.22.028019

    Article  ADS  Google Scholar 

  16. Ia. A. Babenko, I. A. Yugova, S. V. Poltavtsev, M. Salewski, I. A. Akimov, M. Kamp, S. Höfling, D. R. Yakovlev, and M. Bayer, Semiconductors 52, 531 (2018). https://doi.org/10.1134/S106378261804005X

    Article  ADS  Google Scholar 

  17. A. I. Arzhanov, K. R. Karimullin, and A. V. Naumov, Bull. Lebedev Phys. Inst. 45, 91 (2018). https://doi.org/10.3103/S1068335618030077

    Article  ADS  Google Scholar 

  18. A. V. Shesterikov, M. Yu. Gubin, S. N. Karpov, and A. V. Prokhorov, JETP Lett. 107, 435 (2018). https://doi.org/10.1134/S0021364018070081

    Article  ADS  Google Scholar 

  19. I. V. Dzedolik and V. Pereskokov, J. Opt. Soc. Am. A 35, 1420 (2018). https://doi.org/10.1364/JOSAA.35.001420

    Article  ADS  Google Scholar 

  20. I. V. Dzedolik, J. Opt. 16, 125002 (2014). https://doi.org/10.1088/2040-8978/16/12/125002

    Article  ADS  Google Scholar 

  21. K. A. Magaryan, M. A. Mikhailov, K. R. Karimullin, M. V. Knyazev, I. Y. Eremchev, A. V. Naumov, I. A. Vasilieva, and G. V. Klimusheva, J. Lumin. 169, 799 (2016). https://doi.org/10.1016/j.jlumin.2015.08.064

    Article  Google Scholar 

  22. T. Birr, U. Zywietz, T. Fischer, P. Chhantyal, A. B. Evlyukhin, B. N. Chichkov, and C. Reinhardt, Appl. Phys. B 122, 164 (2016). https://doi.org/10.1007/s00340-016-6437-5

    Article  ADS  Google Scholar 

  23. A. O. Savostianov, I. Yu. Eremchev, A. A. Gorshelev, A. V. Naumov, and A. S. Starukhin, JETP Lett. 107, 406 (2018). https://doi.org/10.1134/S002136401807007X

    Article  ADS  Google Scholar 

  24. M. Yu. Gubin, A. V. Shesterikov, M. G. Gladush, and A. V. Prokhorov, Bull. Russ. Acad. Sci.: Phys. 81, 1507 (2017). https://doi.org/10.3103/S1062873817120139

    Article  Google Scholar 

  25. A. S. Kuraptsev and I. M. Sokolov, Phys. Rev. A 90, 012511 (2014). https://doi.org/10.1103/PhysRevA.90.012511

    Article  ADS  Google Scholar 

  26. A. S. Kuraptsev and I. M. Sokolov, Laser Phys. 28, 085203 (2018). https://doi.org/10.1088/1555-6611/aac508

    Article  ADS  Google Scholar 

  27. M. Yu. Gubin, A. V. Shesterikov, S. N. Karpov, and A. V. Prokhorov, Phys. Rev. B 97, 085431 (2018). https://doi.org/10.1103/PhysRevB.97.085431

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.V. Prokhorov is grateful to Prof. A.B. Evlyukhin for useful discussions.

This work was supported by the Russian Foundation for Basic Research (project no. 16-02-01174 a) and was performed within the framework of state assignment 3.5531.2017/8.9 for Vladimir State University (project no. GB-1106/17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Prokhorov.

Additional information

XIII International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM-2018), August 6–12, 2018, Suzdal–Moscow, Russia.

Appendices

DERIVATION OF RELAXATION RATES b AND FREQUENCY ω OF DIPOLE OSCILLATIONS

Let us reduce Eq. (1) to a homogeneous differential equation and obtain relations for new relaxation rates and frequency shift. By substituting solutions (3) into Eq. (1), we obtain

$$\begin{gathered} {{p}_{0}}{{e}^{{\left( { - b/2 - i\omega } \right)t}}}{{\left( { - \frac{b}{2} - i\omega } \right)}^{2}} + \omega _{0}^{2}{{p}_{0}}e{}^{{\left( { - b/2 - i\omega } \right)t}} \\ = \frac{{{{e}^{2}}}}{m}{{E}_{0}}{{e}^{{\left( { - b/2 - i\omega } \right)t}}} - {{b}_{0}}{{p}_{0}}{{e}^{{\left( { - b/2 - i\omega } \right)t}}}\left( { - \frac{b}{2} - i\omega } \right). \\ \end{gathered} $$

After dividing this expression into \({{e}^{{\left( { - b/2 - i\omega } \right)t}}}\) and representing complex amplitude E0 in the algebraic form E0 = Re(E0) + iIm(E0), we obtain

$$\begin{gathered} {{p}_{0}}{{\left( { - \frac{b}{2} - i\omega } \right)}^{2}} + \omega _{0}^{2}{{p}_{0}} \\ = \frac{{{{e}^{2}}}}{m}\left( {\operatorname{Re} \left( {{{E}_{0}}} \right) + i\operatorname{Im} \left( {{{E}_{0}}} \right)} \right) - {{b}_{0}}{{p}_{0}}\left( { - \frac{b}{2} - i\omega } \right). \\ \end{gathered} $$

We will separate the imaginary and real parts of the expression as follows:

$$\begin{gathered} - \frac{{{{e}^{2}}\operatorname{Re} \left( {{{E}_{0}}} \right)}}{m} + \frac{{{{p}_{0}}{{b}^{2}}}}{4} - \frac{{b{{b}_{0}}{{p}_{0}}}}{2} - {{p}_{0}}{{\omega }^{2}} + \omega _{0}^{2}{{p}_{0}} \\ - \;i\left( { - \frac{{{{e}^{2}}\operatorname{Im} \left( {{{E}_{0}}} \right)}}{m} + b{{p}_{0}}\omega - {{b}_{0}}{{p}_{0}}\omega } \right) = 0 \\ \end{gathered} $$

and obtain the systems of the equations

$$ - i\left( { - \frac{{{{e}^{2}}\operatorname{Im} \left( {{{E}_{0}}} \right)}}{m} + b{{p}_{0}}\omega - {{b}_{0}}{{p}_{0}}\omega } \right) = 0,$$
$$ - \frac{{{{e}^{2}}\operatorname{Re} \left( {{{E}_{0}}} \right)}}{m} + \frac{{{{p}_{0}}{{b}^{2}}}}{4} - \frac{{b{{b}_{0}}{{p}_{0}}}}{2} - {{p}_{0}}{{\omega }^{2}} + \omega _{0}^{2}{{p}_{0}} = 0.$$

By solving it simultaneously, we obtain

$$b = {{b}_{0}} + {{b}_{0}}\frac{{{{e}^{2}}\operatorname{Im} \left( {{{E}_{0}}} \right)}}{{m{{p}_{0}}\omega {{b}_{0}}}},$$
$$\Delta \omega \approx - \frac{{{{e}^{2}}\operatorname{Re} \left( {{{E}_{0}}} \right)}}{{2{{\omega }_{0}}m{{p}_{0}}}} + \frac{{{{b}^{2}}}}{{8{{\omega }_{0}}}} - \frac{{b{{b}_{0}}}}{{4{{\omega }_{0}}}},$$

assuming that \({{\omega }^{2}} - \omega _{0}^{2}\) = \((\omega - {{\omega }_{0}})(\omega + {{\omega }_{0}})\)\(2{{\omega }_{0}}\Delta \omega \), where \(\Delta \omega = \omega - {{\omega }_{0}}\). Then, we obtain the following expression for frequency ω of dipole oscillations:

$$\omega \approx {{\omega }_{0}} - \frac{{{{e}^{2}}\operatorname{Re} \left( {{{E}_{0}}} \right)}}{{2{{\omega }_{0}}m{{p}_{0}}}} + \frac{{{{b}^{2}}}}{{8{{\omega }_{0}}}} - \frac{{b{{b}_{0}}}}{{4{{\omega }_{0}}}}.$$

CALCULATION OF THE INTEGRAL FOR THE RATE OF SPP GENERATION BY THE CHANGE OF VARIABLES TECHNIQUE

Let us divide the improper integral of the second kind in (4) by a sum of integrals, taking into account that the integrand has an infinite discontinuity at the point u = 1:

$${{b}_{ \bot }} = 1 + {\text{3/2}}q{\text{Im}}\left[ {\mathop {\lim }\limits_{{{\delta }_{1}} \to - 0} \int\limits_0^{1 + {{\delta }_{1}}} {{{r}_{p}}\exp ( - 4\pi \sqrt {{{\varepsilon }_{1}}} {{l}_{1}}d{\text{/}}\lambda {\text{)}}{{u}^{3}}{\text{/}}{{l}_{1}}{\text{d}}u} } \right]$$
$$ + \;{\text{3/2}}q\operatorname{Im} \left[ {\mathop {\lim }\limits_{{{\delta }_{2}} \to + 0} \int\limits_{1 + {{\delta }_{2}}}^\infty {{{r}_{p}}\exp ( - 4\pi \sqrt {{{\varepsilon }_{1}}} {{l}_{1}}d{\text{/}}\lambda ){{u}^{3}}{\text{/}}{{l}_{1}}{\text{d}}u} } \right].$$

Let us introduce u into the differential:

$$\begin{gathered} {{b}_{ \bot }}\, = \,1\, + \,{\text{3/2}}q{\text{Im}}\left[ {\mathop {\lim }\limits_{{{\delta }_{1}} \to - 0} \int\limits_0^{1 + {{\delta }_{1}}} {\frac{{{{r}_{p}}}}{{4{{l}_{1}}}}{\text{exp}}( - 4\pi \sqrt {{{\varepsilon }_{1}}} {{l}_{1}}d{\text{/}}\lambda {\text{)d}}{{u}^{4}}} } \right] \\ + \;{\text{3/2}}q{\text{Im}}\left[ {\mathop {\lim }\limits_{{{\delta }_{2}} \to + 0} \int\limits_{1 + {{\delta }_{2}}}^\infty {\frac{{{{r}_{p}}}}{{4{{l}_{1}}}}{\text{exp}}( - 4\pi \sqrt {{{\varepsilon }_{1}}} {{l}_{1}}d{\text{/}}\lambda ){\text{d}}{{u}^{4}}} } \right]. \\ \end{gathered} $$
((B1))

By making the change of variables u4 = x1 in (B1), we obtain

$${{b}_{ \bot }} = 1 + {\text{3/2}}q\operatorname{Im} \left[ {\mathop {\lim }\limits_{{{\delta }_{1}} \to - 0} \int\limits_0^{1 + {{\delta }_{1}}} {\frac{{{{r}_{p}}({{x}_{1}})}}{{4{{l}_{1}}({{x}_{1}})}}} } \right.$$
$$\left. {^{{^{{^{{^{{^{{}}}}}}}}}} \times \;{\text{exp}}( - 4\pi \sqrt {{{\varepsilon }_{1}}} {{l}_{1}}({{x}_{1}})d{\text{/}}\lambda ){\text{d}}{{x}_{1}}} \right]$$
((B2))
$$ + \;{\text{3/2}}q\operatorname{Im} \left[ {\mathop {\lim }\limits_{{{\delta }_{2}} \to + 0} \int\limits_{1 + {{\delta }_{2}}}^\infty {\frac{{{{r}_{p}}({{x}_{1}})}}{{4{{l}_{1}}({{x}_{1}})}}{\text{exp}}( - 4\pi \sqrt {{{\varepsilon }_{1}}} {{l}_{1}}({{x}_{1}})d{\text{/}}\lambda ){\text{d}}{{x}_{1}}} } \right],$$

where

$${{r}_{p}}({{x}_{1}}) = \frac{{{{\varepsilon }_{2}}{{l}_{1}}({{x}_{1}}) - {{\varepsilon }_{1}}{{l}_{2}}({{x}_{1}})}}{{{{\varepsilon }_{2}}{{l}_{1}}({{x}_{1}}) + {{\varepsilon }_{1}}{{l}_{2}}({{x}_{1}})}},$$
$${{l}_{1}}({{x}_{1}}) = - i\sqrt {1 - \sqrt {{{x}_{1}}} } ,\quad {{l}_{2}}({{x}_{1}}) = - i\sqrt {{{\varepsilon }_{2}}{\text{/}}{{\varepsilon }_{1}} - \sqrt {{{x}_{1}}} } .$$

Then, we will make the following changes of variables in (B2): \({{t}_{1}}\) = \(\sqrt {1 - \sqrt {{{x}_{1}}} } \) (\({{x}_{1}}\) = \({{(1 - t_{1}^{2})}^{2}}\)) in the second term and \(t_{1}^{'}\) = \(\sqrt {\sqrt {{{x}_{1}}} - 1} \) (\({{x}_{1}}\) = \({{(t{{_{1}^{'}}^{2}} + 1)}^{2}}\)) in the third term. As a result, we obtain the following expressions:

$${{b}_{ \bot }} = 1 + {\text{3/2}}q\operatorname{Im} \left[ {\mathop {\lim }\limits_{{{\delta }_{1}} \to - 0} \int\limits_1^{0 - {{\delta }_{1}}} { - i{{r}_{p}}({{t}_{1}})} } \right.$$
$$\left. {^{{^{{^{{^{{^{{}}}}}}}}}} \times \;\exp (4\pi \sqrt {{{\varepsilon }_{1}}} i{{t}_{1}}d{\text{/}}\lambda )(1 - t_{1}^{2}){\text{d}}{{t}_{1}}} \right]$$
$$ + \,{\text{3/2}}q{\text{Im}}\left[ {\mathop {\lim }\limits_{{{\delta }_{2}} \to + 0} \int\limits_{0 + {{\delta }_{2}}}^\infty {{{r}_{p}}{\text{(}}t_{1}^{'}{\text{)}}\exp ( - 4\pi \sqrt {{{\varepsilon }_{1}}} t_{1}^{'}d{\text{/}}\lambda )(t{{{_{1}^{'}}}^{2}}\, + \,1){\text{d}}t_{1}^{'}} } \right],$$

where

$${{r}_{p}}({{t}_{1}}) = \frac{{{{\varepsilon }_{2}}{{l}_{1}}({{t}_{1}}) - {{\varepsilon }_{1}}{{l}_{2}}({{t}_{1}})}}{{{{\varepsilon }_{2}}{{l}_{1}}({{t}_{1}}) + {{\varepsilon }_{1}}{{l}_{2}}({{t}_{1}})}},\quad {{l}_{1}}({{t}_{1}}) = - i{{t}_{1}},$$
$${{l}_{2}}({{t}_{1}}) = - i\sqrt {{{\varepsilon }_{2}}{\text{/}}{{\varepsilon }_{1}} - 1 + t_{1}^{2}} ,$$
$${{r}_{p}}(t_{1}^{'}) = \frac{{{{\varepsilon }_{2}}{{l}_{1}}(t_{1}^{'}) - {{\varepsilon }_{1}}{{l}_{2}}(t_{1}^{'})}}{{{{\varepsilon }_{2}}{{l}_{1}}(t_{1}^{'}) + {{\varepsilon }_{1}}{{l}_{2}}(t_{1}^{'})}},\quad {{l}_{1}}(t_{1}^{'}) = t_{1}^{'},$$
$${{l}_{2}}(t_{1}^{'}) = - i\sqrt {{{\varepsilon }_{2}}{\text{/}}{{\varepsilon }_{1}} - t{{{_{1}^{'}}}^{2}} - 1} .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubin, M.Y., Gladush, M.G. & Prokhorov, A.V. Configuration Resonance and Generation Rate of Surface Plasmon Polaritons Excited by Semiconductor Quantum Dots near a Metal Surface. Opt. Spectrosc. 126, 83–91 (2019). https://doi.org/10.1134/S0030400X19010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X19010065

Navigation