Skip to main content
Log in

Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We introduce the basics of an apodized 2f/1f wavelength modulation method for the spectroscopy of the R(9) transition line in the first overtone band of carbon monoxide (12C16O) in near-infrared (NIR) region around 2.33 μm. Performance of the method is investigated for high gas concentrations beyond the optically thin limit to generalize common 2f/1f wavelength modulation spectroscopy (WMS) reported by Rieker et al. (Appl Opt 48:5546, [28]). Numerical simulations are performed based on real experimental parameters associated with a NIR spectrometer designed in our laboratory. The results primarily show a more linear response and less error than occurred in the common WMS-2f/1f method for an optically thick sample. It is also theoretically shown that the apodized method enables sharpening the spectrum without peak displacement compared to the common WMS-2f/1f method. The validity of the method is verified experimentally by the trace detection of an air-broadened R(9) CO absorption line centered at 4,294.637 cm−1 at atmospheric pressure and room temperature. The effect of a so-called scaling k-factor on the sharpening of WMS-2f/1f signal is investigated through trace simulation and detection of CO and methane (CH4) lines in the scanning range of a distributed feedback laser. The obtained results show very good agreement between simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L. Brown, M. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, The HITRAN2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 96, 139–204 (2005)

    Article  ADS  Google Scholar 

  2. H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, Near-Infrared Spectroscopy: Principles, Instruments, Applications (Wiley, New York, 2008)

    Google Scholar 

  3. X. Zhou, X. Liu, J.B. Jeffries, R. Hanson, Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser. Meas. Sci. Technol. 14, 1459 (2003)

    Article  ADS  Google Scholar 

  4. M. Gondal, A. Dastageer, M. Shwehdi, Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries. Talanta 62, 131–141 (2004)

    Article  Google Scholar 

  5. E.L. Izake, Forensic and homeland security applications of modern portable Raman spectroscopy. Forensic Sci. Int. 202, 1–8 (2010)

    Article  Google Scholar 

  6. J. Wiss, C. Fleury, U. Onken, Safety improvement of chemical processes involving azides by online monitoring of the hydrazoic acid concentration. Org. Process Res. Dev. 10, 349–353 (2006)

    Article  Google Scholar 

  7. S. Colak, M. Van der Mark, G. t Hooft, J. Hoogenraad, E. Van der Linden, F. Kuijpers, Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999)

    Article  Google Scholar 

  8. D.I. Ellis, R. Goodacre, Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131, 875–885 (2006)

    Article  ADS  Google Scholar 

  9. D. Sands, Diode Lasers (Taylor & Francis, New York, 2010)

    Google Scholar 

  10. E. Zucker, in LEOS’99. IEEE Lasers and Electro-Optics Society 1999 12th Annual Meeting. High power diode lasers (IEEE, 1999), pp 72–73

  11. Y. Li, W. Yuen, G. Li, C. Chang-Hasnain, Top-emitting micromechanical VCSEL with a 31.6-nm tuning range. IEEE Photonics Technol. Lett. 10, 18–20 (1998)

    Article  ADS  Google Scholar 

  12. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser. Science 264, 553–556 (1994)

    Article  ADS  Google Scholar 

  13. J. Faist, Quantum Cascade Lasers (Oxford University Press, Oxford, 2013)

    Book  Google Scholar 

  14. S. Wang, Principles of distributed feedback and distributed Bragg-reflector lasers. IEEE J. Quantum Electron. 10, 413–427 (1974)

    Article  ADS  Google Scholar 

  15. M.G. Allen, Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9, 545 (1998)

    Article  ADS  Google Scholar 

  16. S. Babin, D. Churkin, A. Ismagulov, S. Kablukov, M. Nikulin, Single frequency single polarization DFB fiber laser. Laser Phys. Lett. 4, 428 (2007)

    Article  ADS  Google Scholar 

  17. T. Cai, G. Wang, H. Jia, W. Chen, X. Gao, Temperature and water concentration measurements in combustion gases using a DFB diode laser at 1.4 μm. Laser Phys. 18, 1133–1142 (2008)

    Article  ADS  Google Scholar 

  18. M. Andersson, L. Persson, T. Svensson, S. Svanberg, Flexible lock-in detection system based on synchronized computer plug-in boards applied in sensitive gas spectroscopy. Rev. Sci. Instrum. 78, 113107 (2007)

    Article  ADS  Google Scholar 

  19. G.B. Rieker, Wavelength-Modulation Spectroscopy for Measurements of Gas Temperature and Concentration in Harsh Environments (BiblioBazaar, 2011)

  20. S. Schilt, L. Thevenaz, P. Robert, Wavelength modulation spectroscopy: combined frequency and intensity laser modulation. Appl. Opt. 42, 6728–6738 (2003)

    Article  ADS  Google Scholar 

  21. H. Li, G.B. Rieker, X. Liu, J.B. Jeffries, R.K. Hanson, Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 45, 1052–1061 (2006)

    Article  ADS  Google Scholar 

  22. B.D. Cannon, Reducing of Residual Amplitude Modulation in Frequency-Modulated Signals, U.S. Patent 7,230,712, 2007

  23. D.T. Cassidy, J. Reid, Atmospheric pressure monitoring of trace gases using tunable diode lasers. Appl. Opt. 21, 1185–1190 (1982)

    Article  ADS  Google Scholar 

  24. L.S. Chang, J.B. Jeffries, R.K. Hanson, Mass flux sensing via tunable diode laser absorption of water vapor. AIAA J. 48, 2687–2693 (2010)

    Article  ADS  Google Scholar 

  25. K. Duffin, A.J. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, Tunable diode-laser spectroscopy with wavelength modulation: a calibration-free approach to the recovery of absolute gas absorption line shapes. J. Lightwave Technol. 25, 3114–3125 (2007)

    Article  ADS  Google Scholar 

  26. A.J. McGettrick, K. Duffin, W. Johnstone, G. Stewart, D.G. Moodie, Tunable diode laser spectroscopy with wavelength modulation: a phasor decomposition method for calibration-free measurements of gas concentration and pressure. J. Lightwave Technol. 26, 432–440 (2008)

    Article  ADS  Google Scholar 

  27. L.S. Chang, C.L. Strand, J.B. Jeffries, R.K. Hanson, G.S. Diskin, R.L. Gaffney, D.P. Capriotti, Supersonic mass-flux measurements via tunable diode laser absorption and nonuniform flow modeling. AIAA J. 49, 2783–2791 (2011)

    Article  ADS  Google Scholar 

  28. G.B. Rieker, J.B. Jeffries, R.K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 48, 5546–5560 (2009)

    Article  Google Scholar 

  29. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals. Appl. Opt. 38, 5803–5815 (1999)

    Article  ADS  Google Scholar 

  30. L. Jiang, J. Sislian, Velocity and density measurements in supersonic high-temperature exhaust plumes. AIAA J. 36, 1216–1222 (1998)

    Article  ADS  Google Scholar 

  31. J.F. Becker, T.B. Sauke, M. Loewenstein, Stable isotope analysis using tunable diode laser spectroscopy. Appl. Opt. 31, 1921–1927 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

We acknowledge partial supports by the Mobarakeh Steel Company through grant 48222675 and the Shahid Montazeri power plant through grant 880/3050/110. We also wish to acknowledge the office of graduate studies at the university of Isfahan for their support and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Hosseinzadeh Salati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseinzadeh Salati, S., Khorsandi, A. Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment. Appl. Phys. B 116, 521–531 (2014). https://doi.org/10.1007/s00340-013-5728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5728-3

Keywords

Navigation