Skip to main content
Log in

Dispersion tailoring in single mode optical fiber by doping silver nanoparticle

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose an optical fiber which has very low dispersion loss (typically ~ 6.7 ps2/km at 1,550 nm) that can be achieved by doping Ag nanoparticle into the core glass. At low absorption loss approximation, dispersion free propagation can be achieved up to 64 km for a 20 ps pulse. Enhanced third order nonlinearity due to the presence of Ag nanoparticle (typically ~ 3.82 × 10−20 W/m2) compensates for long length dispersion broadening that is not possible in conventional fused silica step index fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Ghatak, K. Thyagrajan, Introduction to fiber optics (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  2. M.N. Hossain, M. Shah Alam, DMdN Hasan, K.M. Mohsin, A highly nonlinear spiral photonic crystal fiber for tailoring two zero dispersion wavelengths in the visible region. Photonics Lett Pol 2(3), 143–145 (2010)

    Google Scholar 

  3. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H.-J. Fuchs, E.-B. Kley, H. Zellmer, A. Tünnermann, High-power femtosecond Yb-doped fiber amplifier. Opt. Express 10(14), 628–638 (2002)

    Article  ADS  Google Scholar 

  4. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, A. Hideur, High-energy femtosecond Yb-doped dispersion compensation free fiber laser. Opt. Express 15(17), 10725–10732 (2007)

    Article  ADS  Google Scholar 

  5. T. Kurita, H. Yoshida, H. Furuse, T. Kawashima, N. Miyanaga, Dispersion compensation in an Yb-doped fiber oscillator for generating transform-limited, wing-free pulses. Opt. Express 19(25), 25199–25205 (2011)

    Article  ADS  Google Scholar 

  6. B. Ortaç, J. Limpert, A. Tünnermann, High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime. Opt. Lett. 32(15), 2149–2151 (2007)

    Article  ADS  Google Scholar 

  7. A. Chong, J. Buckley, W. Renninger, F. Wise, All-normal-dispersion femtosecond fiber laser. Opt. Express 14(21), 10095–10100 (2006)

    Article  ADS  Google Scholar 

  8. P.K. Jain, K.S. Lee, I.H. El-Sayed, Mostafa A. El-Sayed, Calculated absorption and scattering properties of gold nanoparticles of different size, calculated shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110(14), 7238–7248 (2006)

    Article  Google Scholar 

  9. A.S. Medvedev, V.S. Lebedev, Modeling of light absorption and scattering by metal nanoparticles coated with organic dye J-aggregate. Kratkie Soobshcheniya po Fizike 37(6), 23–27 (2010)

    Google Scholar 

  10. W.M. Merrill, R.E. Diaz, M.M. LoRe, M.C. Squires, N.G. Alexopoulos, Effective medium theories for artificial materials composed of multiple sizes of spherical inclusions in a host continuum. IEEE Transactions on Antennas and Propagation 47(1), 142–148 (1999)

    Article  ADS  Google Scholar 

  11. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. App. Opt. 37(22), 5271–5283 (1998)

    ADS  Google Scholar 

  12. R. Driben, A. Husakou, J. Herrmann, Low-threshold supercontinuum generation in glasses doped with silver nanoparticles. Opt. Express 17(20), 17989–17995 (2009)

    Article  ADS  Google Scholar 

  13. N. Zhavoronkov, R. Driben, B.A. Bregadiolli, M. Nalin, B.A. Malomed, Observation of asymmetric spectrum broadening induced by silver nanoparticles in a heavy-metal oxide glass. Europhys. Lett. 94(3), 37011–37015 (2011)

    Article  ADS  Google Scholar 

  14. R.W. Boyd, R.J. Gehr, G.L. Fischer, J.E. Sipez, Nonlinear optical properties of nanocomposite materials. Pure Appl. Opt. 5, 505–512 (1996)

    Article  ADS  Google Scholar 

  15. M. Amemiya, Pulse broadening due to higher order dispersion and its transmission limit. J Lightwave Technol. 20(4), 591–597 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  16. G.P. Agrawal, Non-linear Fiber Optics (Academic Press, San Diego, 2001)

    Google Scholar 

  17. L.F. Mollenauer, R.H. Stolen, J.P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phy. Rev. Lett. 45(13), 1095–1098 (1980)

    Article  ADS  Google Scholar 

  18. J.M. Dudley, L.P Barry, P.G. Bollond, J.D. Harvey, R. Leonhardt, Simultaneous measurement of the dispersion and nonlinearity of standard fiber using frequency resolved optical gating. ECOC 97, Conference Publication No. 448 (1997)

  19. C.G. Granqvist, O. Hundcri, Optical properties of Ag-Si02 Cermet films: a comparison of effective-medium theories. Phy. Rev. B 18(6), 15 (1978)

    Article  Google Scholar 

  20. D. Stroud, F.P. Pan, Self-consistent approach to electromagnetic wave propagation in composite medium: application to model granular metals. Phys. Rev. B 17, 1602–1610 (1978)

    Article  ADS  Google Scholar 

  21. J. Sancho-Parramon et al., Modeling of optical properties of silver-doped nanocomposite glasses modified by electric-field-assisted dissolution of nanoparticles. App. Opt. 45(35), 8874–8881 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors thank Director, CSIR-CGCRI for permitting us to publish this work. One of the authors (R.C.) is indebted to CSIR for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal K. Bhadra.

Appendix

Appendix

All the three models have certain merits and demerits. When the doped metal particle concentration is low all three theories give similar result [10]. But when the concentration increases the Maxwell–Garnett (MG) theory becomes inaccurate as the metal particles could form a connected network in the host matrix which is not considered in the formulation. However Sheng’s model is valid when both the host and dopant are granular in nature, which does not satisfy since we consider metal particle that are doped uniformly in host matrix of silica, which is not granular in nature [19]. In such case Bruggemann’s (BG) effective medium theory is useful to calculate the permittivity of the composite structure. We have taken spherical metal particles doped in silica as dielectric medium. It can be shown that if a particle of permittivity of ε 1 is embedded in a homogeneous medium of permittivity ε 2 then effective permittivity ε eff of such a composite becomes [20]

$$ f\left( {\frac{{\varepsilon_{1} - \varepsilon_{\text{eff}} }}{{\varepsilon_{1} + 2\varepsilon_{\text{eff}} }}} \right) + \left( {1 - f} \right)\left( {\frac{{\varepsilon_{2} - \varepsilon_{\text{eff}} }}{{\varepsilon_{2} + 2\varepsilon_{\text{eff}} }}} \right) = 0 $$
(8)

where f is the nanoparticle filling factor given as f = V Ag/V total. For small filling factor f ≪ 1, ε eff ≈ ε 2 and ε eff + 2ε 2 ≈ 3ε eff. Under this approximation, the above equation is identical to Maxwell–Garnett equation [12]

$$ \frac{{\varepsilon_{\text{eff}} - \varepsilon_{2} }}{{\varepsilon_{\text{eff}} + 2\varepsilon_{2} }} = f\frac{{\varepsilon_{1} - \varepsilon_{2} }}{{\varepsilon_{1} + 2\varepsilon_{\text{eff}} }} $$
(9)

Since the doping of Ag nano-particle in glass host is considered to be very low (around 1–2 % volume concentration) in the present case Maxwell–Garnett theory is adopted. From Eq. (9) we get

$$ \varepsilon_{\text{eff}} = \varepsilon_{2} \frac{1 + 2\sigma f}{1 - \sigma f} $$
(10.a)

where

$$ \sigma = \frac{{\varepsilon_{1} - \varepsilon_{2} }}{{\varepsilon_{1} + 2\varepsilon_{2} }} $$
(10.b)

Equation (10.a) a, b can be used to find out the effective permittivity of the composite material. Hence the refractive index of the material can be found out from the relation n = √ε eff. In this study ε 1 denotes the permittivity of the silver nano-particle and ε 2 denotes the permittivity of the fused silica. Jordi Sancho-Parramon et al. [21] used the MG formulation to describe the experimental reflectance data of a silver-glass composite film.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, R., Bhadra, S.K. Dispersion tailoring in single mode optical fiber by doping silver nanoparticle. Appl. Phys. B 111, 399–406 (2013). https://doi.org/10.1007/s00340-013-5347-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5347-z

Keywords

Navigation