Skip to main content
Log in

In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame (T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10−5 OD (1σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm−1 of up to 2.1 ppm⋅m. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.N. Najm, P.H. Paul, C.J. Mueller, P.S. Wyckoff, Combust. Flame 113, 312 (1998)

    Article  Google Scholar 

  2. B. Prabasena, M. Röder, C. Hecht, T. Kathrotia, U. Riedel, T. Dreier, C. Schulz, Appl. Phys. B (2012, in press)

  3. T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, A. Brockhinke, Appl. Phys. B (2012, in press)

  4. I. Glassman, Proc. Combust. Inst. 22, 295 (1989)

    Google Scholar 

  5. P. Lindstedt, Proc. Combust. Inst. 27, 269 (1998)

    Google Scholar 

  6. H. Richter, J. Howard, Prog. Energy Combust. Sci. 26, 565 (2000)

    Article  Google Scholar 

  7. J.-M. Bonard, M. Croci, C. Klinke, F. Conus, I. Arfaoui, T. Stöckli, A. Chatelain, Phys. Rev. B 67, 085412 (2003)

    Article  ADS  Google Scholar 

  8. A. Dollet, Surf. Coat. Technol. 177, 245 (2004)

    Article  Google Scholar 

  9. Z.R. Quine, K.L. McNesby, Appl. Opt. 48, 3075 (2009)

    Article  ADS  Google Scholar 

  10. Z.S. Li, M. Linvin, J. Zetterberg, J. Kiefer, M. Aldén, Proc. Combust. Inst. 31, 817 (2007)

    Article  Google Scholar 

  11. Z.W. Sun, Z.S. Li, B. Li, Z.T. Alwahabi, M. Aldén, Appl. Phys. B 101, 423 (2010)

    Article  ADS  Google Scholar 

  12. H. Tsuji, I. Yamaoka, Proc. Combust. Inst. 13, 723 (1971)

    Google Scholar 

  13. F. Xu, Combust. Flame 71, 593 (2000)

    Google Scholar 

  14. M.J. Castaldi, A.M. Vincitore, S.M. Senkan, Combust. Sci. Technol. 107, 1 (1995)

    Article  Google Scholar 

  15. T. Melton, Proc. Combust. Inst. 27, 1631 (1998)

    Google Scholar 

  16. N. Chai, S.V. Naik, W.D. Kulatilaka, N.M. Laurendeau, R.P. Lucht, S. Roy, J.R. Gord, Appl. Phys. B 87, 731 (2007)

    Article  ADS  Google Scholar 

  17. A.V. Mokhov, B.A.V. Bennett, H.B. Levinsky, M.D. Smooke, Proc. Combust. Inst. 31, 997 (2007)

    Article  Google Scholar 

  18. A. Mokhov, S. Gersen, H. Levinsky, Chem. Phys. Lett. 403, 233 (2005)

    Article  ADS  Google Scholar 

  19. B.A. Williams, J.W. Fleming, Appl. Phys. B, Lasers Opt. 75, 883 (2002)

    Article  ADS  Google Scholar 

  20. S. Gersen, A.V. Mokhov, H.B. Levinsky, Combust. Flame 143, 333 (2005)

    Article  Google Scholar 

  21. I. Yamaoka, H. Tsuji, in Proc. Combust. Inst. (Elsevier, Amsterdam, 1977), pp. 1145–1154

    Google Scholar 

  22. S. Wagner, B.T. Fisher, J. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839 (2009)

    Article  Google Scholar 

  23. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  24. H.E. Schlosser, J. Wolfrum, V. Ebert, B.A. Williams, R.S. Sheinson, J.W. Fleming, Proc. Combust. Inst. 29, 353 (2002)

    Article  Google Scholar 

  25. C. Schulz, A. Dreizler, V. Ebert, J. Wolfrum, in Handbook of Experimental Fluid Mechanics, eds. by C. Tropea, A. Yarin, J. Foss (Springer, Berlin, 2007), pp. 1241–1316

    Chapter  Google Scholar 

  26. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, Proc. Combust. Inst. 30, 1611 (2005)

    Article  Google Scholar 

  27. A.R. Awtry, J.W. Fleming, V. Ebert, Opt. Lett. 31, 900 (2006)

    Article  ADS  Google Scholar 

  28. A.R. Awtry, B.T. Fisher, R.A. Moffatt, V. Ebert, J.W. Fleming, Proc. Combust. Inst. 31, 799 (2007)

    Article  Google Scholar 

  29. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  30. L.S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, J. Quant. Spectrosc. Radiat. Transf. 110, 533 (2009)

    Article  ADS  Google Scholar 

  31. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    Article  ADS  Google Scholar 

  32. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Taylor & Francis, London, 1996)

    Google Scholar 

  33. U. Maas, Appl. Math. 3, 249 (1995)

    MathSciNet  Google Scholar 

  34. U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the DFG (Deutsche Forschungsgemeinschaft) project number DFG EB 235/2-1, DFG EB 235/2-2, DFG RI 839/4-2 and EXC 259 (Center of Smart Interfaces).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, S., Klein, M., Kathrotia, T. et al. In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame. Appl. Phys. B 107, 585–589 (2012). https://doi.org/10.1007/s00340-012-4953-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4953-5

Keywords

Navigation