Skip to main content
Log in

Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report studies using laser photoionization and time-of-flight mass spectrometry to detect several explosive-related compounds (ERCs). The ultimate goal of this work is the detection of buried land mines through their chemical signatures. Resonantly enhanced multiphoton ionization using jet expansion cooling, with a nanosecond pulse laser, results in complete photofragmentation of the parent ERC and appearance only of the NO+ ion, which forms all of the detected signal. This will also occur for compounds naturally occurring in the environment, such as NO2 or peroxyacetylnitrate, rendering too many false alarms for this approach to be viable. Therefore, two other techniques were evaluated. Single-photon ionization with nanosecond pulses in the vacuum ultraviolet is shown to produce only the parent ion, and is probably the most suitable choice. For 2,4-dinitrobenzene we find a limit of detection of about 40 ppb, for a signal to noise ratio of 3. This may be sufficient for land-mine detection, but improvement is likely with future work. Nonresonant multiphoton ionization in the ultraviolet with a femtosecond laser produces fragmentation but retains some parent ERC ion signal. The limit of detection is similar to that of single-photon ionization but it is harder to implement with lasers now commercially available. Future directions are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. George, T.F. Jenkins, D.C. Leggett, J.H. Cragin, J. Phelan, J. Oxley, J. Pennington, Proc. Soc. Photo-Opt. Instrum. Eng. 3710, 259 (1999)

    Google Scholar 

  2. V. George, T.F. Jenkins, J.M. Phelan, D.C. Leggett, J. Oxley, S.W. Webb, P.H. Miyares, J.H. Cragin, J. Smith, T.E. Berry, Proc. Soc. Photo-Opt. Instrum. Eng. 4038, 590 (2000)

    Google Scholar 

  3. http://www.vetmed.auburn.edu/ibds/doglab.htm (2000)

  4. J.B. Spicer, P. Dagdigian, R. Osiander, J.A. Miragliotta, X.C. Zhang, R. Kersting, D.R. Crosley, R.K. Hanson, J. Jeffries, Proc. Soc. Photo-Opt. Instrum. Eng. 5089, 1088 (2003)

    Google Scholar 

  5. G.S. Settles, J. Fluid Eng. 127, 189 (2005)

    Article  Google Scholar 

  6. G.W. Lemire, J.B. Simeonsson, R. Sausa, Anal. Chem. 65, 529 (1993)

    Article  Google Scholar 

  7. J. Shu, I. Bar, S. Rosenwaks, Appl. Opt. 38, 4705 (1999)

    Article  ADS  Google Scholar 

  8. A. Marshall, A. Clark, R. Jennings, K.W.D. Ledingham, J. Sander, R.P. Singhal, Int. J. Mass Spectrom. 116, 143 (1992)

    Article  Google Scholar 

  9. A. Marshall, A. Clark, K.W.D. Ledingham, J. Sander, R.P. Singhal, C. Kosmidis, R.M. Deas, Rapid Commun. Mass Spectrom. 8, 512 (1994)

    Article  Google Scholar 

  10. C. Kosmidis, A. Marshall, A. Clark, R.M. Deas, K.W.D. Ledingham, R.P. Singhal, Rapid Commun. Mass Spectrom. 8, 607 (1994)

    Article  Google Scholar 

  11. D. Wu, J.P. Singh, F.Y. Yeuh, D.L. Monts, Appl. Opt. 35, 3998 (1996)

    Article  ADS  Google Scholar 

  12. J. Shu, I. Bar, S. Rosenwaks, Appl. Phys. B 70, 621 (2000)

    Article  ADS  Google Scholar 

  13. J. Shu, I. Bar, S. Rosenwaks, Appl. Phys. B 71, 665 (2000)

    Article  ADS  Google Scholar 

  14. T. Arsui-Parper, D. Heflinger, R. Levi, Appl. Opt. 40, 6677 (2001)

    ADS  Google Scholar 

  15. D. Heflinger, T. Arusi-Parper, Y. Ron, R. Levi, Opt. Commun. 204, 327 (2002)

    Article  ADS  Google Scholar 

  16. H. Oser, R. Thanner, H.H. Grotheer, in Proc. Eighth Int. Symp. Transport Phenomena in Combustion, vol. II, 1996, p. 1646

  17. R. Thanner, H. Oser, H.H. Grotheer, Eur. Mass Spectrom. 4, 215 (1998)

    Google Scholar 

  18. H. Oser, K. Copic, M.J. Coggiola, G.W. Faris, D.R. Crosley, Chemosphere 43, 469 (2001)

    Article  Google Scholar 

  19. H. Oser, M.J. Coggiola, G.W. Faris, S.E. Young, B. Volquardsen, D.R. Crosley, Appl. Opt. 40, 859 (2001)

    ADS  Google Scholar 

  20. F. Muhlberger, R. Zimmerman, A. Kettrup, Anal. Chem. 73, 3590 (2001)

    Article  Google Scholar 

  21. F. Muhlberger, K. Hafner, S. Kaesdorf, T. Fergo, R. Zimmerman, Anal. Chem. 76, 6753 (2004)

    Article  Google Scholar 

  22. K.W.D. Ledingham, H.S. Kilic, C. Kosmidis, R.M. Deas, A. Marshall, T. McCanny, R.P. Singhal, A.J. Langley, W. Shaikh, Rapid Commun. Mass Spectrom. 9, 1522 (1995)

    Article  Google Scholar 

  23. C. Kosmidis, K.W.D. Ledingham, H.S. Kilic, T. McCanny, T.P. Singhal, A.J. Langley, W. Shaikh, J. Phys. Chem. A 101, 2265 (1997)

    Article  Google Scholar 

  24. S.M. Hankin, L. Robson, A.D. Tasker, K.W.D. Ledingham, T. McCanny, R.P. Singhal, C. Kosmidis, P. Tzallas, A.J. Langley, P.F. Taday, E.J. Divall, in Tenth Int. Symp. Resonance Ionization Spectroscopy, 2000, p. 14

  25. S.M. Hankin, A.D. Tasker, L. Robson, K.W.D. Ledingham, X. Fang, P. McKenna, T. McCanny, R.P. Singhal, C. Kosmidis, P. Tzallas, D.A. Jarozynski, D.R. Jones, R.C. Isaac, S. Jamison, Rapid Commun. Mass Spectrom. 16, 111 (2002)

    Article  Google Scholar 

  26. K. Tönnies, R.P. Schmid, C. Weickhardt, J. Reif, J. Grotemeyer, Int. J. Mass Spectrom. 206, 245 (2001)

    Article  Google Scholar 

  27. C. Weickhardt, K. Tönnies, Rapid Commun. Mass Spectrom. 16, 442 (2002)

    Article  Google Scholar 

  28. R.H. Lipson, S.S. Dimov, P. Wang, Y.J. Shi, D.M. Mao, X.K. Hu, J. Vanstone, Instrum. Sci. Technol. 28, 85 (2000)

    Article  Google Scholar 

  29. J.W. Hepburn, in Laser Techniques in Chemistry, vol. 23, ed. by A.B. Meyers, T.R. Rizzo (Wiley, New York, 1995), p. 149

  30. N.P. Lockyer, J.C. Vickerman, Laser Chem. 17, 139 (1997)

    Google Scholar 

  31. C. Mullen, A. Irwin, B.V. Pond, D.L. Huestis, M.J. Coggiola, H. Oser, Anal. Chem. 78, 3807 (2006)

    Article  Google Scholar 

  32. J. Luque, D.R. Crosley, LIFBASE: Database and spectral simulation, ver. 1.5, SRI International Rep. MP 99-009 (1999)

  33. B.J. Finlayson-Pitts, J.N. Pitts, Chemistry of the Upper and Lower Atmosphere (Academic, San Diego, CA, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.R. Crosley.

Additional information

PACS

07.07.Df; 33.80.Rv; 82.80.Ms; 82.80.Rt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pond, B., Mullen, C., Suarez, I. et al. Detection of explosive-related compounds by laser photoionization time-of-flight mass spectrometry. Appl. Phys. B 86, 735–742 (2007). https://doi.org/10.1007/s00340-006-2465-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2465-x

Keywords

Navigation