Skip to main content
Log in

Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper reports the laboratory spectroscopic calibration of near- and mid- infrared tunable laser spectrometers used to determine in situ trace gases in the middle atmosphere of the Earth or in development for the investigation of the Martian atmosphere. The use of infrared absorption spectroscopy to measure gas concentrations requires a proper knowledge of the rotation–vibration spectra of the targeted molecules as well as a proper investigation of the tunable laser spectral emission properties. This last point is of particular importance for the use of new-generation lasers like quantum-cascade lasers or room-temperature multi-quantum wells laser diodes emitting between 2 and 3 μm. Purposely, we have developed various laboratory tunable laser set-ups to obtain accurate line strengths and pressure-broadening coefficients of atmospheric molecules and to test the performances of cutting-edge laser technology for trace gas sensing. In this paper, the spectroscopic calibration work is described. Several atmospheric applications of tunable laser are reported to stress the impact on concentration retrieval of a proper spectroscopic calibration work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Durry, G. Mégie, Appl. Opt. 38, 7342 (1999)

    Article  ADS  Google Scholar 

  2. E.C. Richard, K.K. Kelly, R.H. Winkler, R. Wilson, T.L. Thompson, R.J. Mclaughlin, A.L. Schmeltekopf, A.F. Tuck, Appl. Phys. B 75, 183 (2002)

    Article  ADS  Google Scholar 

  3. D.C. Scott, R.L. Herman, C.R. Webster, R.D. May, G.J. Flesch, E.J. Moyer, Appl. Opt. 38, 4609 (1999)

    Article  ADS  Google Scholar 

  4. G. Moreau, C. Robert, V. Catoire, M. Chartier, C. Camy-Peyret, N. Huret, M. Pirre, L. Pomathiod, G. Chalumeau, Appl. Opt. 44, 5972 (2005)

    Article  ADS  Google Scholar 

  5. F. D’Amato, P. Mazzinghi, F. Castagnoli, Appl. Phys. B 75, 195 (2002)

    Article  ADS  Google Scholar 

  6. G. Durry, A. Hauchecorne, J. Ovarlez, H. Ovarlez, I. Pouchet, V. Zeninari, B. Parvitte, J. Atmosph. Chem. 43, 175 (2002)

    Article  Google Scholar 

  7. T. Le Barbu, B. Parvitte, V. Zéninari, I. Vinogradov, O. Korablev, G. Durry, Appl. Phys. B 82, 133 (2006)

    Article  ADS  Google Scholar 

  8. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 284, 553 (1994)

    Article  ADS  Google Scholar 

  9. L.S. Rothman, The HITRAN molecular spectroscopic database and HAWKS, (2004) Edition. ftp://cfa-ftp.harvard.edu/pub/HITRAN

  10. J. Humlicek, J. Quantum. Spectrosc. Radiat. Transf. 27, 437 (1982)

    Article  ADS  Google Scholar 

  11. R.R. Gamache, S. Kennedy, R. Hawkins, L.S. Rothman, J. Mol. Struct. 517, 407 (2000)

    Article  ADS  Google Scholar 

  12. S.G. Rautian, I.C. Sobel’man, Sov. Phys. Uspekhi 9, 701 (1967)

    Article  ADS  Google Scholar 

  13. L. Galatry, Phys. Rev. 122, 1218 (1961)

    Article  ADS  MATH  Google Scholar 

  14. G. Durry, N. Amarouche, V. Zéninari, B. Parvitte, T. Le Barbu, J. Ovarlez, Spectrochim. Acta A 60, 3371 (2004)

    Article  Google Scholar 

  15. B. Parvitte, V. Zéninari, I. Pouchet, G. Durry, J. Quantum. Spectrosc. Radiat. Transf. 75, 493 (2002)

    Article  ADS  Google Scholar 

  16. G. Durry, V. Zéninari, B. Parvitte, T. Le Barbu, F. Lefèvre, J. Ovarlez, R.R. Gamache, J. Quantum. Spectrosc. Radiat. Transf. 94, 387 (2005)

    Article  ADS  Google Scholar 

  17. I. Pouchet, V. Zéninari, B. Parvitte, G. Durry, J. Quantum. Spectrosc. Radiat. Transf. 83, 619 (2004)

    Article  ADS  Google Scholar 

  18. L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. Von Der Heyden, G. Durry, J. Quantum. Spectrosc. Radiat. Transf. 101, 325 (2006)

    Article  ADS  Google Scholar 

  19. T. Le Barbu, V. Zéninari, B. Parvitte, D. Courtois, G. Durry, J. Quantum. Spectrosc. Radiat. Transf. 98, 264 (2006)

    Article  ADS  Google Scholar 

  20. L. Joly, B. Parvitte, V. Zéninari, D. Courtois, G. Durry, J. Quantum. Spectrosc. Radiat. Transf. (2006), unpublished

  21. L. Joly, V. Zéninari, B. Parvitte, D. Courtois, G. Durry, Opt. Lett. 31, 143 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Zeninari.

Additional information

PACS

07.57.T; 93.85; 07.87

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeninari, V., Parvitte, B., Joly, L. et al. Laboratory spectroscopic calibration of infrared tunable laser spectrometers for the in situ sensing of the Earth and Martian atmospheres. Appl. Phys. B 85, 265–272 (2006). https://doi.org/10.1007/s00340-006-2331-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2331-x

Keywords

Navigation