Skip to main content
Log in

Optimising dislocation-engineered silicon light-emitting diodes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This article presents a study of the possibilities of optimising the electroluminescence (EL) efficiency of dislocation-engineered silicon light-emitting diodes (DELEDs). The diodes were produced by implantation of boron in n-type (100)Si wafers, at a constant ion energy and fluence, of 30 keV and 1×1015 ions/cm2, respectively. The density and the areal coverage by dislocation loops were varied by applying different annealing times in a rapid thermal processing, from 30 s to 60 min. It is shown that the EL efficiency is directly correlated to the number and areal coverage by the loops. The highest population of loops, ∼5×109 /cm2, and an areal coverage of around 50% were achieved for 1–5 min annealing. This loop distribution results in optimal DELEDs, having the highest EL response and the largest increase of EL intensity with operating temperature (80–300 K). The results of this work confirm a previously introduced model of charge-carrier spatial confinement by a local stress induced by the edge of the dislocation loops, preventing carrier diffusion to non-radiative recombination centres and enhancing radiative transitions at the silicon band edge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Hirschman, L. Tysbekov, S.P. Duttagupta, P.M. Fauchet, Nature 384, 338 (1996)

    Article  ADS  Google Scholar 

  2. Z.H. Lu, D.J. Lockwood, J.M. Baribeau, Nature 378, 258 (1995)

    Article  ADS  Google Scholar 

  3. X. Luo, S.B. Zhang, S.H. Wei, Phys. Rev. Lett. 89, 076802 (2002)

    Article  PubMed  ADS  Google Scholar 

  4. B. Zheng, J. Michel, F.Y.G. Ren, L.C. Kimerling, D.C. Jacobson, J.M. Poate, Appl. Phys. Lett. 64, 2842 (1994)

    Article  ADS  Google Scholar 

  5. L. Vescan, T. Stoica, J. Luminesc. 80, 485 (1999)

    Article  Google Scholar 

  6. D. Leong, M. Harry, K.J. Reeson, K.P. Homewood, Nature 387, 686 (1997)

    Article  ADS  Google Scholar 

  7. W.L. Ng, M.A. Lourenço, R.M. Gwilliam, S. Ledain, G. Shao, K.P. Homewood, Nature 410, 192 (2001)

    Article  PubMed  ADS  Google Scholar 

  8. K.P. Homewood, M.A. Lourenço, Mater. Today , 34 (2005)

  9. M. Kittler, T. Arguirov, A. Fischer, W. Seifert, Opt. Mater. 27, 967 (2005)

    Article  ADS  Google Scholar 

  10. W.-K. Wu, J. Washburn, J. Appl. Phys. 48, 3747 (1977)

    Article  ADS  Google Scholar 

  11. J.J. Comer, Radiat. Eff. 36, 57 (1978)

    Article  Google Scholar 

  12. K.S. Jones, S. Prussin, E.R. Weber, Appl. Phys. A 45, 1 (1988)

    Article  ADS  Google Scholar 

  13. G.Z. Pan, K.N. Tu, S. Prussin, Appl. Phys. Lett. 68, 1654 (1996)

    Article  ADS  Google Scholar 

  14. G.Z. Pan, K.N. Tu, J. Appl. Phys. 82, 601 (1997)

    Article  ADS  Google Scholar 

  15. L.F. Giles, M. Omri, B. de Mauduit, A. Claverie, D. Skarlatos, D. Tsoukalas, A. Nejim, Nucl. Instrum. Methods B 148, 273 (1999)

    Article  ADS  Google Scholar 

  16. F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L.F. Giles, N.E.B. Cowern, J. Appl. Phys. 87, 8420 (2000)

    Article  ADS  Google Scholar 

  17. A. Claverie, B. Colombeau, B. de Mauduit, C. Bonafos, X. Hebras, G. Ben Assayag, F. Cristiano, Appl. Phys. A 76, 1025 (2003)

    Article  ADS  Google Scholar 

  18. M. Milosavljević, G. Shao, M.A. Lourenço, R.M. Gwilliam, K.P. Homewood, J. Appl. Phys. 97, 073512 (2005)

    Article  ADS  Google Scholar 

  19. J.F. Ziegler, J.P. Biersak, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985)

    Google Scholar 

  20. M.A. Lourenço, M.S.A. Siddiqui, R.M. Gwilliam, G. Shao, K.P. Homewood, Physica E 16, 376 (2003)

    Article  ADS  Google Scholar 

  21. M.A. Lourenço, W.L. Ng, G. Shao, R.M. Gwilliam, K.P. Homewood, Proc. SPIE 4654, 138 (2002)

    Article  ADS  Google Scholar 

  22. M.A. Lourenço, M. Milosavljević, R.M. Gwilliam, K.P. Homewood, G. Shao, Appl. Phys. Lett. 87, 201105 (2005)

    Article  ADS  Google Scholar 

  23. M.A. Lourenço, M.S.A. Siddiqui, G. Shao, R.M. Gwilliam, K.P. Homewood, in Towards the First Silicon Laser, ed. by L. Pavesi et al. (Kluwer Academic, The Netherlands, 2003), pp. 11–20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Milosavljević.

Additional information

PACS

85.60.Jb; 78.60.Fi; 61.72.Tt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milosavljević, M., Lourenço, M., Shao, G. et al. Optimising dislocation-engineered silicon light-emitting diodes. Appl. Phys. B 83, 289–294 (2006). https://doi.org/10.1007/s00340-006-2149-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2149-6

Keywords

Navigation