Skip to main content

Radiation-Enhanced Dislocation Glide: The Current Status of Research

  • Chapter
  • First Online:
Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

Abstract

Dislocations in most semiconductors exhibit radiation-enhanced dislocation glide (REDG) which is a cause of serious degradation in bipolar devices under forward biasing. Phenomenologically, REDG is characterized by the remarkable reduction of activation energy for glide velocity and the pre-exponential factor controlled by radiation intensity. Although the REDG shares features common with similar effects in point defects known as the recombination-enhanced defect reaction (REDR) that is well interpreted in terms of the phonon kick mechanism, it is not as yet established whether the REDG and the REDR share or not the same microscopic mechanism due to the lack of knowledge concerning electronic levels associated with the dislocations showing the REDG. Recent progress, however, has been achieved by studies of REDG in 4H-silicon carbide (4H-SiC) in which the dislocation component that exhibits the REDG is identified as 30°-Si(g) partial dislocation. Nevertheless, the driving force for the REDG in 4H-SiC is not the mechanical stress as in usual cases but an anomalous reversal of the sign of the Shockley stacking-fault (SSF) energy depending on the radiation intensity. An attempt was made in our recent experiments of photoinduced REDG to separate the intensity-dependent REDG effect and also the intensity-dependent driving force by simultaneous measurements of SSF expansion velocity (hence, the glide velocity of 30°-Si(g) partials) and the intensity of photoluminescence from the same SSFs (the latter allows us to deduce the driving force for the SSF expansion and hence the REDG). A comment, inspired by the studies of REDG in 4H-SiC, is given also to the mechanism of radiation-enhanced dislocation climb, another cause of degradation induced by minority-carrier injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Petroff, R.L. Hartman, Appl. Phys. Lett. 23, 469 (1973)

    Article  ADS  Google Scholar 

  2. S. Kishino, N. Chinone, H. Nakashima, R. Ito, Appl. Phys. Lett. 29, 469 (1977)

    Google Scholar 

  3. J.P. Bergman, L. Lendenmann, P.Å. Nilsson, U. Lindelfelt, P. Skytt, Mater. Sci. Forum 353–356, 299 (2001)

    Article  Google Scholar 

  4. K. Maeda, S. Takeuchi, in Dislocation in Solids, ed. by F.R.N. Nabarro, M.S. Duesbery, vol. 10 (North-Holland, Amsterdam, 1996), p. 435

    Google Scholar 

  5. K. Maeda, M. Sato, A. Kubo, S. Takeuchi, J. Appl. Phys. 54, 161 (1983)

    Article  ADS  Google Scholar 

  6. N. Maeda, S. Takeuchi, Jpn. J. Appl. Phys. 29, 1151 (1990)

    Article  ADS  Google Scholar 

  7. C. Levade, A. Faress, G. Vanderschaeve, Philos. Mag. A 69, 855 (1994)

    Article  ADS  Google Scholar 

  8. K. Maeda, K. Suzuki, Y. Yamashita, Y. Mera, J. Phys. Cond. Matt. 12, 10079 (2000)

    Article  ADS  Google Scholar 

  9. Y. Ohno, T. Taishi, I. Yonenaga, Phys. Stat. Sol. A 206, 1904 (2009)

    Article  ADS  Google Scholar 

  10. S. Tomiya, T. Hino, S. Goto, M. Takeya, M. Ikeda, IEEE J. Sel. Topics Quantum Electron. 10, 1277 (2004)

    Article  Google Scholar 

  11. K. Maeda, K. Suzuki, M. Ichihara, S. Nishiguchi, K. Ono, Y. Mera, S. Takeuchi, Physica B 273–274, 134 (1999)

    Article  Google Scholar 

  12. A. Galeckas, J. Linnros, P. Pirouz, Phys. Rev. Lett. 96, 025502 (2006)

    Article  ADS  Google Scholar 

  13. H. Idrissi, G. Regula, M. Lancin, J. Douin, B. Pichaud, Phys. Stat. Sol. C 2, 1998 (2005)

    Article  Google Scholar 

  14. J. Caldwell, O.J. Glembocki, R.E. Stahlbush, K.D. Hobart, J. Elec. Mater. 37, 699 (2008)

    Article  ADS  Google Scholar 

  15. A.N. Pilyankevich, V.F. Britun, Phys. Stat. Sol. A 82, 449 (1984)

    Article  ADS  Google Scholar 

  16. K. Maeda, K. Suzuki, M. Ichihara, Microsc. Microanal. Microstruct. 4, 211 (1993)

    Article  Google Scholar 

  17. J.W. Yang, X.J. Ning, P. Pirouz, Japan-US Workshop on Functional Fronts in Advanced Ceramics (Ceramic Society of Japan, Tokyo, 1994), p. 55

    Google Scholar 

  18. C. Levade, G. Vanderschaeve, J. Cryst. Grow. 197, 565 (1999)

    Article  ADS  Google Scholar 

  19. Y. Ohno, Appl. Phys. Lett. 87, 181909 (2005)

    Article  ADS  Google Scholar 

  20. V.I. Roshetov, A.É. Armeeva, G.V. Bushueva, O.N. Talenskii, A.A. Pendyur, A.N. Pechennov, N.A. Tyapunina, Sov. Phys. Solid State 29, 689 (1987)

    Google Scholar 

  21. V.D. Negrii, Yu.A. Osipyan, N.V. Lomak, Phys. Stat. Sol. A 126, 49 (1991)

    Article  ADS  Google Scholar 

  22. K. Maeda, S. Takeuchi, Dislocations in Solids (University of Tokyo Press, Tokyo, 1984), p. 433

    Google Scholar 

  23. K. Maeda, S. Takeuchi, Appl. Phys. Lett. 42, 664 (1983)

    Article  ADS  Google Scholar 

  24. K. Küsters, H. Alexander, Physica B 116, 1151 (1983)

    Article  Google Scholar 

  25. N. Maeda, K. Kimura, S. Takeuchi, Bull. Acad. Sci. USSR Phys. Ser. 51, 93 (1987)

    Google Scholar 

  26. I. Yonenaga, M. Werner, M. Bartch, U. Messerschmidt, E.R. Weber, Phys. Stat. Sol. A 171, 35 (1999)

    Article  ADS  Google Scholar 

  27. E.Y. Gutmanas, N. Travitzky, P. Haasen, Phys. Stat. Sol. A 51, 922 (1979)

    Article  Google Scholar 

  28. M.S. Shikhsaidov, Sov. Phys. Solid State 23, 968 (1981)

    Google Scholar 

  29. B.E. Midvanyan, M.S. Shikhsaidov, Phys. Stat. Sol. A 107, 131 (1988)

    Article  ADS  Google Scholar 

  30. Y. Ohno, T. Taishi, I. Yonenaga, Phys. Stat. Sol. A 209, 1904 (2009)

    Article  ADS  Google Scholar 

  31. D.B. Holt, B.G. Yacobi, Extended Defects in Semiconductors (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  32. R. Jones, Mater. Sci. Eng. B 71, 24 (2000)

    Article  Google Scholar 

  33. V.D. Negrii, Osipyan YuA, N.V. Lomak, Phys. Stat. Sol. A 126, 49 (1991)

    Article  ADS  Google Scholar 

  34. R.E. Stahlbush, M. Fatemi, J.B. Fedion, S.D. Arthur, L.B. Rowland, S. Wang, J. Elect. Mater. 31, 370 (2002)

    Article  ADS  Google Scholar 

  35. A. Galeckas, J. Linnros, P. Pirouz, Appl. Phys. Lett. 81, 883 (2002)

    Article  ADS  Google Scholar 

  36. S. Ha, M. Benamara, M. Skowronski, H. Lendermann, Appl. Phys. Lett. 83, 4957 (2003)

    Article  ADS  Google Scholar 

  37. K. Maeda, S. Takeuchi, J. Phys. (Paris) 44, C4–375 (1983)

    Article  Google Scholar 

  38. L.C. Kimerling, Solid State Electron. 21, 1392 (1978)

    Article  ADS  Google Scholar 

  39. J.D. Weeks, J.C. Tully, L.C. Kimerling, Phys. Rev. B 12, 3286 (1975)

    Article  ADS  Google Scholar 

  40. H. Sumi, Physica B 117–118, 197 (1983)

    Article  Google Scholar 

  41. L.C. Kimerling, D.V. Lang, Inst. Phys. Conf. Ser. 23, 589 (1975)

    Google Scholar 

  42. J.P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968), p. 484

    Google Scholar 

  43. N. Maeda, S. Takeuchi, Inst. Phys. Conf. Ser. 104, 303 (1989)

    Google Scholar 

  44. M. Skowronski, S. Ha, J. Appl. Phys. 99, 011101 (2006)

    Google Scholar 

  45. K. Maeda, K. Suzuki, S. Fujita, M. Ichihara, S. Hyodo, Philos. Mag. A 57, 573 (1988)

    Article  ADS  Google Scholar 

  46. H. Lendenmann, F. Dahkquist, N. Johansson, R. Söderholm, P.A. Nilsson, J.P. Bergman, P. Skytt, Mater. Sci. Forum 353–356, 727 (2001)

    Article  Google Scholar 

  47. S. Ha, M. Slowronski, J.J. Sumakeris, M.J. Peisley, M.K. Das, Phys. Rev. Lett. 92, 175504 (2004)

    Article  ADS  Google Scholar 

  48. S. Takeuchi, K. Suzuki, K. Maeda, H. Iwanaga, Philos. Mag. A 50, 171 (1984)

    Article  ADS  Google Scholar 

  49. M.H. Hong, A.V. Samant, P. Pirouz, Philos. Mag. A 80, 919 (2000)

    Article  ADS  Google Scholar 

  50. P. Pirouz, J.L. Demenet, M.H. Hong, Philos. Mag. A 81, 1207 (2001)

    Article  ADS  Google Scholar 

  51. T. Miyanagi, H. Tsuchida, I. Kamata, T. Nakamura, K. Nakayama, R. Ishii, Y. Sugawara, Appl. Phys. Lett. 89, 062104 (2006)

    Article  ADS  Google Scholar 

  52. M.S. Miao, S. Limpijumnong, W.R.L. Lambrecht, Appl. Phys. Lett. 79, 4360 (2001)

    Article  ADS  Google Scholar 

  53. B. Chen, T. Sekiguchi, T. Ohyanagi, H. Matsuhata, A. Kinoshita, H. Okumura, J. Appl. Phys. 106, 074502 (2009)

    Article  ADS  Google Scholar 

  54. T.A. Kuhr, J. Lin, H.J. Chung, M. Skowronski, F. Szmulowicz, J. Appl. Phys. 92, 5863 (2002)

    Article  ADS  Google Scholar 

  55. W.R.L. Lambrecht, M.S. Miao, Phys. Rev. B 73, 155312 (2006)

    Article  ADS  Google Scholar 

  56. R. Hirano, Y. Sato. M. Tajima, K.M. Itoh, K. Maeda, Mater. Sci. Forum. 395, 717–720 (2012)

    Google Scholar 

  57. A.T. Blumenau, C. Fall, R. Jones, S. Öberg, T. Frauenheim, P.R. Briddon, Phys. Rev. B 68, 174108 (2003)

    Article  ADS  Google Scholar 

  58. G. Savini, G. Savini, A. Marocchic, I. Suarez-Martineza, G. Haffendena, M. Heggie, S. Öberg, Physica B 401–402, 62 (2007)

    Article  Google Scholar 

  59. G. Savini, Phys. Stat. Sol. C. 4, 2883 (2007)

    Article  Google Scholar 

  60. T. Fujimoto, T. Aigo, M. Nakabayashi, S. Sato, M. Katsuno, H. Tsuge, H. Yashiro, H. Hirano, T. Hoshino, W. Ohashi, Mater. Sci. Forum 645–648, 319 (2010)

    Article  Google Scholar 

  61. P. Petroff, L.C. Kimerling, Appl. Phys. Lett. 29, 461 (1976)

    Article  ADS  Google Scholar 

  62. O. Ueda, S. Isozumi, S. Yamakoshi, T. Kotani, J. Appl. Phys. 50, 765 (1979)

    Article  ADS  Google Scholar 

  63. S. O’Hara, P.W. Hutchinson, P.S. Dobson, Appl. Phys. Lett. 30, 368 (1977)

    Article  ADS  Google Scholar 

  64. R. Hirano, Y. Sato, H. Tsuchida, M. Tajima, K.M. Itoh, K. Maeda, App. Phys. Exp. 5 (2012) in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maeda, K. (2013). Radiation-Enhanced Dislocation Glide: The Current Status of Research. In: Ueda, O., Pearton, S. (eds) Materials and Reliability Handbook for Semiconductor Optical and Electron Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4337-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4337-7_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4336-0

  • Online ISBN: 978-1-4614-4337-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics