Skip to main content
Log in

Role of the Au and Ag nanoparticles on organic solar cells based on P3HT:PCBM active layer

  • T.C. : Solar Energy Materials and Applications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, P3HT:PCBM blend active layer was incorporated with Au and Ag nanoparticles (NPs) for different concentration to investigate the effects of the NPs on the performance organic solar cells (OSCs) with ITO/PEDOT:PSS/P3HT:PCBM:NPs/LiF/Al design. The active layer was analyzed by AFM, SEM and XRD measurements. Optical energy gap of P3HT:PCBM (undoped) and P3HT:PCBM (doped) active layers were obtained using UV–visible spectroscopy for different concentrations. The photovoltaic current density–voltage measurements were carried out under air mass (AM) 1.5G solar simulation. The OSC whose active layer undoped, gave the Jsc of 17.09 mA/cm2, Voc of 0.48 V, FF of 45%, and PCE of 2.11%. Whereas, the highest values of PCE were calculated as 3.11% for doped with Au NPs (1.5 wt%) and as 3.20% for Ag NPs (0.5 wt%), respectively. In summary, Au and Ag NPs created strong local electric field enhancements and caused to a surface plasmonic effect in the active layer for some concentrations and improved the device’s PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Feng, M. Niu, Z. Wen, X. Hao, Recent advances of plasmonic organic solar cells: photophysical investigations. Polymers (Basel). (2018). https://doi.org/10.3390/polym10020123

    Article  Google Scholar 

  2. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics. (2012). https://doi.org/10.1038/nphoton.2012.11

    Article  Google Scholar 

  3. F.F. Muhammad, K. Sulaiman, Thermal stability and reproducibility enhancement of organic solar cells by tris(hydroxyquinoline)gallium dopant forming a dual acceptor active layer. ARO-THE Sci. J. KOYA Univ. (2018). https://doi.org/10.14500/aro.10491

    Article  Google Scholar 

  4. A.M. Ballantyne, T.A.M. Ferenczi, M. Campoy-Quiles, T.M. Clarke, A. Maurano, K.H. Wong, W. Zhang, N. Stingelin-Stutzmann, J.S. Kim, D.D.C. Bradley, J.R. Durrant, I. McCulloch, M. Heeney, J. Nelson, S. Tierney, W. Duffy, C. Mueller, P. Smith, Understanding the influence of morphology on poly(3-hexylselenothiophene): PCBM solar cells. Macromolecules (2010). https://doi.org/10.1021/ma902477h

    Article  Google Scholar 

  5. F. Jin, B. Chu, W. Li, Z. Su, X. Yan, J. Wang, R. Li, B. Zhao, T. Zhang, Y. Gao, C.S. Lee, H. Wu, F. Hou, T. Lin, Q. Song, Highly efficient organic tandem solar cell based on SubPc:C70 bulk heterojunction. Org. Electron. (2014). https://doi.org/10.1016/j.orgel.2014.10.019

    Article  Google Scholar 

  6. E. Bundgaard, F.C. Krebs, Low band gap polymers for organic photovoltaics. Sol. Energy Mater. Sol. Cells. (2007). https://doi.org/10.1016/j.solmat.2007.01.015

    Article  Google Scholar 

  7. L. Lu, L. Yu, Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on IT. Adv. Mater. (2014). https://doi.org/10.1002/adma.201400384

    Article  Google Scholar 

  8. T. Xu, L. Yu, How to design low bandgap polymers for highly efficient organic solar cells. Mater. Today. (2014). https://doi.org/10.1016/j.mattod.2013.12.005

    Article  Google Scholar 

  9. X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, L.X. Chen, R.P.H. Chang, A. Facchetti, T.J. Marks, Polymer solar cells with enhanced fill factors. Nat. Photonics. (2013). https://doi.org/10.1038/nphoton.2013.207

    Article  Google Scholar 

  10. R. Po, C. Carbonera, A. Bernardi, N. Camaioni, The role of buffer layers in polymer solar cells. Energy Environ. Sci. (2011). https://doi.org/10.1039/c0ee00273a

    Article  Google Scholar 

  11. Z. Ahmad, F. Touati, F.F. Muhammad, M.A. Najeeb, R.A. Shakoor, Effect of ambient temperature on the efficiency of the PCPDTBT: PC71BM BHJ solar cells. Appl. Phys. A Mater. Sci. Process. (2017). https://doi.org/10.1007/s00339-017-1098-8

    Article  Google Scholar 

  12. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles. Adv. Funct. Mater. (2006). https://doi.org/10.1002/adfm.200500573

    Article  Google Scholar 

  13. C.T. Chien, P. Hiralal, D.Y. Wang, I.S. Huang, C.C. Chen, C.W. Chen, G.A.J. Amaratunga, Graphene-based integrated photovoltaic energy harvesting/storage device. Small. (2015). https://doi.org/10.1002/smll.201403383

    Article  Google Scholar 

  14. W.J. Yoon, K.Y. Jung, J. Liu, T. Duraisamy, R. Revur, F.L. Teixeira, S. Sengupta, P.R. Berger, Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic devices using self-assembled layer of silver nanoparticles. Sol. Energy Mater. Sol. Cells. (2010). https://doi.org/10.1016/j.solmat.2009.08.006

    Article  Google Scholar 

  15. C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. (2007). https://doi.org/10.1007/s00775-007-0208-z

    Article  Google Scholar 

  16. W. Shen, J. Tang, R. Yang, H. Cong, X. Bao, Y. Wang, X. Wang, Z. Huang, J. Liu, L. Huang, J. Jiao, Q. Xu, W. Chen, L.A. Belfiore, Enhanced efficiency of polymer solar cells by incorporated Ag-SiO2 core-shell nanoparticles in the active layer. RSC Adv. (2014). https://doi.org/10.1039/c3ra45495a

    Article  Google Scholar 

  17. C.H. Chou, F.C. Chen, Plasmonic nanostructures for light trapping in organic photovoltaic devices. Nanoscale. (2014). https://doi.org/10.1039/c4nr02191f

    Article  Google Scholar 

  18. M. Xue, L. Li, B.J. Tremolet De Villers, H. Shen, J. Zhu, Z. Yu, A.Z. Stieg, Q. Pei, B.J. Schwartz, K.L. Wang, Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3601742

    Article  Google Scholar 

  19. Y.J. Huang, W.C. Lo, S.W. Liu, C.H. Cheng, C.T. Chen, J.K. Wang, Unified assay of adverse effects from the varied nanoparticle hybrid in polymer-fullerene organic photovoltaics. Sol. Energy Mater. Sol. Cells. (2013). https://doi.org/10.1016/j.solmat.2013.03.031

    Article  Google Scholar 

  20. S. Sahare, N. Veldurthi, S. Datar, T. Bhave, Photon assisted conducting atomic force microscopy study of nanostructured additives in P3HT:PCBM. RSC Adv. (2015). https://doi.org/10.1039/c5ra20266c

    Article  Google Scholar 

  21. H. Kaçuş, Aydoǧan, M. Biber, Metin, M. Sevim, The power conversion efficiency optimization of the solar cells by doping of (Au:Ag) nanoparticles into P3HT:PCBM active layer prepared with chlorobenzene and chloroform solvents. Mater. Res. Express. (2019). https://doi.org/10.1088/2053-1591/ab309a

    Article  Google Scholar 

  22. J.S. Metzman, A.U. Khan, B.A. Magill, G.A. Khodaparast, J.R. Heflin, G. Liu, Critical role of polystyrene layer on plasmonic silver nanoplates in organic photovoltaics. ACS Appl. Energy Mater. (2019). https://doi.org/10.1021/acsaem.8b01860

    Article  Google Scholar 

  23. C. Manaa, L. Bouaziz, M. Lejeune, F. Kouki, K. Zellama, M. Benlahsen, M. Mejatty, H. Bouchriha, Detailed investigation of optoelectronic and microstructural properties of plasma polymerized cyclohexane thin films: dependence on the radiofrequency power. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4921703

    Article  Google Scholar 

  24. A. Benchaabane, Z. Ben Hamed, F. Kouki, M. Abderrahmane Sanhoury, K. Zellama, A. Zeinert, H. Bouchriha, Performances of effective medium model in interpreting optical properties of polyvinylcarbazole: ZnSe nanocomposites. J. Appl. Phys (2014). https://doi.org/10.1063/1.4870804

    Article  Google Scholar 

  25. S. Sharma, A.K. Srivastava, S. Chawla, Self assembled surface adjoined mesoscopic spheres of SnO2 quantum dots and their optical properties. Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2012.05.070

    Article  Google Scholar 

  26. M.N. Luwang, Microemulsion mediated synthesis of triangular shape SnO2 nanoparticles: luminescence application. Appl. Surf. Sci. (2014). https://doi.org/10.1016/j.apsusc.2013.11.077

    Article  Google Scholar 

  27. P. Mahendia, G. Chauhan, H. Wadhwa, G. Kandhol, S. Mahendia, R. Srivastava, O.P. Sinha, T.D. Clemons, S. Kumar, Study of induced structural, optical and electrochemical properties of Poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) and their blend as an effect of graphene doping. J. Phys. Chem. Solids. (2021). https://doi.org/10.1016/j.jpcs.2020.109644

    Article  Google Scholar 

  28. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, Effect of Sn dopants on the optical and electrical properties of ZnO films. Opt. Appl. XL(1), 7–14 (2010)

    Google Scholar 

  29. A.A. Yadav, E.U. Masumdar, Preparation and characterization of indium doped CdS0.2Se 0.8 thin films by spray pyrolysis. Mater. Res. Bull. (2010). https://doi.org/10.1016/j.materresbull.2010.06.034

    Article  Google Scholar 

  30. D.H. Wang, D.Y. Kim, K.W. Choi, J.H. Seo, S.H. Im, J.H. Park, O.O. Park, A.J. Heeger, Enhancement of donor—acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles. Angew. Chemie - Int. Ed. (2011). https://doi.org/10.1002/anie.201101021

    Article  Google Scholar 

  31. B.P. Rand, P. Peumans, S.R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters. J. Appl. Phys. (2004). https://doi.org/10.1063/1.1812589

    Article  Google Scholar 

  32. F. Monestier, J.J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend. Sol. Energy Mater. Sol. Cells. (2007). https://doi.org/10.1016/j.solmat.2006.10.019

    Article  Google Scholar 

  33. T.M. Chien, P. Pavaskar, W.H. Hung, S. Cronin, S.H. Chiu, S.N. Lai, Study of the plasmon energy transfer processes in dye sensitized solar cells. J. Nanomater. (2015). https://doi.org/10.1155/2015/139243

    Article  Google Scholar 

  34. M.F. Xu, X.Z. Zhu, X.B. Shi, J. Liang, Y. Jin, Z.K. Wang, L.S. Liao, Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. ACS Appl. Mater. Interfaces. (2013). https://doi.org/10.1021/am4001979

    Article  Google Scholar 

  35. A.J. Morfa, K.L. Rowlen, T.H. Reilly, M.J. Romero, J. Van De Lagemaat, Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.2823578

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) with research project number of 212T012. The authors would like to thank Assoc. Prof. Dr. O. Metin, Dr. A. Baltakesmez and Dr. M. Sevim for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şakir Aydoğan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaçuş, H., Biber, M. & Aydoğan, Ş. Role of the Au and Ag nanoparticles on organic solar cells based on P3HT:PCBM active layer. Appl. Phys. A 126, 817 (2020). https://doi.org/10.1007/s00339-020-03992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03992-7

Keywords

Navigation