Skip to main content
Log in

Perovskite phase formation in formamidinium–methylammonium lead iodide bromide (FAPbI3)1-x(MAPbBr3)x materials and their morphological, optical and photovoltaic properties

  • T.C.: Solar Energy Materials and Applications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This manuscript describes the synthesis of formamidinium lead iodide (FAPbI3) thin films annealed at different temperatures to investigate the perovskite phase formation temperature and check its effect on morphology and optical properties. By using these materials, inverted perovskite solar cells devices were also fabricated for the photovoltaic properties. Devices with FAPbI3 annealed at 130 °C and higher temperature have shown power conversion efficiency ~ 11%. Second, formamidinium–methylammonium lead iodide bromide (FAPbI3)1-x (MAPbBr3)x (x = 0, 0.05, 0.1, 0.15, 0.2 and 1) was used as the absorbing layer in perovskite solar cells and the best PCE of 14.99% was observed with x = 0.1. Films were characterized by XRD, UV–vis absorption spectroscopy, photoluminescence, SEM and AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Grätzel, S.M. Zakeeruddin, Mater. Today 16, 11 (2013)

    Article  Google Scholar 

  2. A. Toshniwal, V. Kheraj, Sol. Energy 149, 54 (2017)

    Article  ADS  Google Scholar 

  3. S. Kazim, M.K. Nazeeruddin, M. Grätzel, S. Ahmad, Angew. Chem. Int. Ed. 53, 2812 (2014)

    Article  Google Scholar 

  4. S.D. Stranks, H.J. Snaith, Nat. Nanotechnol. 10, 391 (2015)

    Article  ADS  Google Scholar 

  5. Research Cell Record Efficiency Chart by National Renewable Energy Laboratory (NREL), https://www.nrel.gov/pv/assets/images/efficiency-chart.png (Accessed March 2019).

  6. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013). https://doi.org/10.1021/jz4020162

    Article  Google Scholar 

  7. T.A. Berhe et al., Energy Environ. Sci. 9, 323 (2016)

    Article  Google Scholar 

  8. G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970 (2015)

    Article  Google Scholar 

  9. H.S. Kim, J.Y. Seo, N.G. Park, Chemsuschem 9, 2528 (2016)

    Article  Google Scholar 

  10. Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, Y.-B. Cheng, J. Mater. Chem. A 3, 8139 (2015)

    Article  Google Scholar 

  11. T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Adv. Energy Mater. 5, 1500963 (2015)

    Article  Google Scholar 

  12. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Nano Lett.13, 1764 (2013)

    Article  ADS  Google Scholar 

  13. X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 7, 703 (2015)

    Article  Google Scholar 

  14. J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho, N.G. Park, Adv. Energy Mater. 5, 1501310 (2015)

    Article  Google Scholar 

  15. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, Angew. Chem. 126, 11414 (2014)

    Article  Google Scholar 

  16. X. Dong, X. Fang, M. Lv, B. Lin, S. Zhang, J. Ding, N. Yuan, J. Mater. Chem. A 3, 5360 (2015). https://doi.org/10.1039/C4TA06128D

    Article  Google Scholar 

  17. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, J. Mater. Chem. A2, 705 (2014)

    Article  Google Scholar 

  18. X. Li et al., Energy Tech. 3, 551 (2015)

    Article  Google Scholar 

  19. R.K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, E.A. Katz, J. Phys. Chem. Lett. 6, 326 (2015)

    Article  Google Scholar 

  20. R. Ruess, F. Benfer, F. Böcher, M. Stumpp, D. Schlettwein, Chem. Phys. Chem. 17, 1505 (2016)

    Article  Google Scholar 

  21. E. Mosconi, J.M. Azpiroz, F. De Angelis, Chem. Mater. 27, 4885 (2015)

    Article  Google Scholar 

  22. T.J. Jacobsson, J.-P. Correa-Baena, M. Pazoki, M. Saliba, K. Schenk, M. Grätzel, A. Hagfeldt, Energy Environ. Sci. 9, 1706 (2016)

    Article  Google Scholar 

  23. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Science 348, 1234 (2015)

    Article  ADS  Google Scholar 

  24. G. Kieslich, S. Sun, A.K. Cheetham, Chem. Sci. 6, 3430 (2015)

    Article  Google Scholar 

  25. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J.J. Berry, K. Zhu, Chem. Mater. 28, 284 (2015)

    Article  Google Scholar 

  26. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, Chem. Sci. 7, 4548 (2016)

    Article  Google Scholar 

  27. Z. Tang et al., Sci. Rep. 7, 12183 (2017)

    Article  ADS  Google Scholar 

  28. M. Muzammal uz Zaman, M. Imran, A. Saleem, A. H. Kamboh, M. Arshad, N. A. Khan, and P. Akhter, Physica B Cond. Matter 522, 57 (2017).

  29. A. Saleem, M. Imran, M. Arshad, A.H. Kamboh, N.A. Khan, M.I. Haider, Appl. Phys. A 125, 229 (2019)

    Article  ADS  Google Scholar 

  30. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S.M. Zakeeruddin, U. Röthlisberger, M. Grätzel, Ener. Environ. Sci. 9, 656 (2016)

    Article  Google Scholar 

  31. D.P. McMeekin et al., Science 351, 151 (2016)

    Article  ADS  Google Scholar 

  32. Z. Yang, C.-C. Chueh, P.-W. Liang, M. Crump, F. Lin, Z. Zhu, A.K.-Y. Jen, Nano Energy 22, 328 (2016)

    Article  Google Scholar 

  33. A. Binek, F.C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett.6, 1249–1253 (2015)

    Article  Google Scholar 

  34. M. Zhang, F. Zhang, Y. Wang, L. Zhu, Y. Hu, Z. Lou, Y. Hou, F. Teng, Sci. Rep. 8, 11157 (2018)

    Article  ADS  Google Scholar 

  35. C. Chen, S. Zhang, S. Wu, W. Zhang, H. Zhu, Z. Xiong, Y. Zhang, W. Chen, RSC Adv. 7, 35819 (2017)

    Article  Google Scholar 

  36. R. Ruess, M. Stumpp, D. Schlettwein, Monatshefte für Chem.148, 827–833 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by the Higher Education Commission of Pakistan for the project 35 IRSIP PSc 16. We also acknowlege the National University of Singapore, Singapore for allowing us to use their research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Khan, N.A. Perovskite phase formation in formamidinium–methylammonium lead iodide bromide (FAPbI3)1-x(MAPbBr3)x materials and their morphological, optical and photovoltaic properties. Appl. Phys. A 125, 575 (2019). https://doi.org/10.1007/s00339-019-2866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2866-4

Navigation