Skip to main content
Log in

Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region \(1.77 \, \upmu \text {m}\). The annealed QDs have shown significantly more infrared response of \(7.2 \, \upmu \text {m}\) compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance–voltage (GV ) characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. J. Phys. Rev. Lett. 78, 5014 (1997)

    Article  ADS  Google Scholar 

  2. Y. Okada, N.J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C.C. Phillips, D.J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, J.F. Guillemoles, Intermediate band solar cells: recent progress and future directions. J. Appl. Phys. 2, 021302 (2015)

    Google Scholar 

  3. Zerui Zheng, Haining Ji, Yu. Peng, Zhiming Wang, Recent progress towards quantum dot solar cells with enhanced optical absorption. J. Nanoscale Res. Lett. 11, 266 (2016)

    Article  ADS  Google Scholar 

  4. K. Driscoll, M.F. Bennett, S.J. Polly, D.V. Forbes, S.M. Hubbard, Effect of quantum dot position and background doping on the performance of quantum dot enhanced GaAs solar cells. Appl. Phys. Lett. 104, 23119 (2014)

    Article  Google Scholar 

  5. S.J. Polly, S. Hellstroem, M.A. Slocum, Z.S. Bittner, D.V. Forbes, P.J. Roland, R.J. Ellingson, S.M. Hubbard, Effect of electric field on carrier escape mechanisms in quantum dot intermediate band solar cells. J. Appl. Phys. 121, 013101 (2017)

    Article  ADS  Google Scholar 

  6. S. Watanabe, S. Asahi, T. Kada, K. Hirao, T. Kaizu, Y. Harada, T. Kita, Two-step photocurrent generation enhanced by miniband formation in InAs/GaAs quantum dot superlattice intermediate band solar cells. J. Appl. Phys. Lett. 110, 193104 (2017)

    Article  ADS  Google Scholar 

  7. P.J. Carrington, A.S. Mahajumi, M.C. Wagener, J.R. Botha, Q. Zhuang, A. Krier, Type II GaSb/GaAs quantum dot/ring stacks with extended photoresponse for efficient solarcells. Phys. B 407, 1493–1496 (2012)

    Article  ADS  Google Scholar 

  8. Akshay Krishna, Jacob J. Krich, Increasing efficiency in intermediate band solar cells with overlapping absorptions. J. Opt. 18, 7 (2016)

    Article  Google Scholar 

  9. S. Tomic, Effect of Sb induced type II alignment on dynamical processes in InAs/GaAs/GaAsSb quantum dots: implication to solar cell design. J. Appl. Phys. Lett. 103, 072112 (2013)

    Article  ADS  Google Scholar 

  10. J. Richter, J. Strassner, T.H. Loeber, H. Fouckhardt, T. Nowozin, L. Bonato, D. Bimberg, D. Braam, A. Lorke, GaSb quantum dots on GaAs with high localization energy of 710 meV and an emission wavelength of 1.3 mm. J. Cryst. Growth 404, 48–53 (2014)

    Article  ADS  Google Scholar 

  11. J. Gao, S. Jeong, F. Lin, P.T. Erslev, O.E. Semonin, J.M. Luther, M.C. Beard, Improvement in carrier transport properties by mild thermal annealing of PbS quantum dot solar cells. App. Phys. Lett. 102, 043506 (2013)

    Article  ADS  Google Scholar 

  12. W.S. Liu, T.F. Chu, T.H. Huang, Energy band structure tailoring of vertically aligned InAs/GaAsSb quantum dot structure for intermediate band solar cell application by thermal annealing process. J. Opt. Express. 22(25), 30963–74 (2014)

    Article  ADS  Google Scholar 

  13. P.M. Lam, J. Wu, S. Hatch, D. Kim, M. Tang, H. Liu, The effect of rapid thermal annealing on InAs/GaAs quantum dot solar cells. J. IET Optoelectron. 9(2), 65–68 (2015)

    Article  Google Scholar 

  14. T. Tayagaki, N. Usami, Y. Kanemitsu, Influence of thermal annealing on the carrier extraction in Ge/Si quantum dot solar cells. J. Appl. Phys. 51 (2012)

    Article  Google Scholar 

  15. J. Wu, Z.M. Wang, V.G. Dorogan, S. Li, J. Lee, Y.I. Mazur, E.S. Kim, G.J. Salamo, Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells. J. Nanoscale Res. Lett. 8(1), 5 (2013)

    Article  ADS  Google Scholar 

  16. W.H. Chang, W.Y. Chen, M.C. Cheng, C.Y. Lai, T.M. Hsu, N.T. Yeh, J.I. Chyi, Charging of embedded InAs self-assembled quantum dots by space-charge techniques. J. Phys. Rev. B 64, 125315 (2001)

    Article  ADS  Google Scholar 

  17. I. Ramiro, J. Villa, C. Tablero, E. Antolín, A. Luque, A. Martí, J. Hwang, J. Phillips, A.J. Martin, J. Millunchick, Analysis of the intermediate-band absorption properties of type-II GaSb/GaAs quantum-dot photovoltaics. J. Phys. Rev. B 96, 125422 (2017)

    Article  ADS  Google Scholar 

  18. H. Boustanji, S. Jaziri, J.L. Lazzari, Contribution of a single quantum dots layer in intermediate band solar cells: a capacitance analysis. Sol. Energy Mater. Sol. Cells 159, 633–639 (2017)

    Article  Google Scholar 

  19. W.S. Liu, R.Y. Liu, HCh. Lin, Tailoring energy band alignment of vertically aligned InGaAs quantum dots capped with GaAs(Sb)/AlGaAsSb composite structure after thermal annealing treatment. J. ACS Photon. 4(2), 242–250 (2017)

    Article  Google Scholar 

  20. T. Kawazu, H. Sakaki, Effects of interface grading on electronic states and optical transitions in GaSb type-II quantum dots in GaAs. J. Appl. Phys. 50, 04DJ06 (2011)

    Article  Google Scholar 

  21. N. Vukmirovic, Z. Gacevic, Z. Ikonic, D. Indjin, P. Harrison, V. Milanovic, Intraband absorption in InAs/GaAs quantum dot infrared photodetectorseffective mass versus K.P modeling. Semicond. Sci. Technol. 21, 1098–1104 (2006)

    Article  ADS  Google Scholar 

  22. D.E. Maghraoui, M. Triki, S. Jaziri, M. Leroux, J. Brault, Quasi-bound states and continuum absorption background of polar Al0.5Ga0.5N/GaN quantum dots. J. Appl. Phys. 116, 014301 (2014)

    Article  ADS  Google Scholar 

  23. W. Ng, E. Zibik, L. Wilson, M. Skolnick, J. Cockburn, M. Steer, Tuning of intraband absorption and photoresponse in self-assembled InAs/GaAs quantum dots by thermal annealing. J. Appl. Phys. 103, 066101 (2008)

    Article  ADS  Google Scholar 

  24. M. Sabaeian, M. Shahzadeh, Investigation of in-plane and z-polarized intersubband transitions in pyramid-shaped InAs/GaAs quantum dots coupled to wetting layer: size and shape matter. J. Appl. Phys. 116, 043102 (2014)

    Article  ADS  Google Scholar 

  25. T.A. Ameen, Y.M. El Batawy, Polarization dependence of absorption by bound electrons in self-assembled quantum dots. J. Appl. Phys. 113, 193102 (2013)

    Article  ADS  Google Scholar 

  26. J. Houel, S. Sauvage, A. Lemaitre, P. Boucaud, Interference effects on bound-to-continuum quantum dot absorption. J. Appl. Phys. 107, 083102 (2010)

    Article  ADS  Google Scholar 

  27. J.Z. Zhang, I. Galbraith, Intraband absorption for InAs/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 84, 1934 (2004)

    Article  ADS  Google Scholar 

  28. T. Kawazu, H. Sakaki, Effects of Sb/As intermixing on optical properties of GaSb type-II quantum dots in GaAs grown by droplet epitaxy. App. Phys. Lett. 97, 261906 (2010)

    Article  ADS  Google Scholar 

  29. A. Sellai, P. Kruszewski, A. Mesli, A.R. Peaker, M. Missous, Electrical characteristics of InAs self-assembled quantum dots embedded in GaAs using admittance spectroscopy. J. Nanophoton. 6, 063502–0635031 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hela Boustanji.

Appendix conductance–voltage (G–V)characteristics of self-assembled quantum dots

Appendix conductance–voltage (GV)characteristics of self-assembled quantum dots

Under the thermodynamic equilibrium state \(\displaystyle \frac{ \text {d}{P_{\text {QD}}(t)} }{ \text {d }t }=0\) we have, [14]

$$\begin{aligned} \sigma ^{\text {p}} \nu _{\text {p}} p \left( 1-f_{\text {p}}^{\text {eq}}\right) =e_{\text {p}}f_{\text {p}}^{\text {eq}} \end{aligned}$$

we define the equilibrium occupation fraction by \(f_{\text {h}}^{\text {eq}}\), which is given by \(f_{\text {p}}^{\text {eq}}=\displaystyle \frac{P_{\text {QD}}}{N_{\text {QD}}}\)

For a small perturbation at a given angular frequency \(\omega =2{\varPi }f\), the variation of population is given to first order by

$$\begin{aligned} \displaystyle \frac{ \text {d}\delta {P_{\text {QD}}(t)} }{ \text {d }t }= & {} j \omega \delta P_{\text {QD}}(t) \\ \displaystyle \frac{ \text {d}\delta {P_{\text {QD}}(t)} }{ \text {d }t }= & {} - \left( e_{\text {p}}+ \sigma ^{\text {p}} \nu _{\text {p}} p \right) \delta P_{\text {QD}}(t) +\sigma ^{\text {p}} \nu _{\text {p}} N_{\text {QD}} \left( 1-f_{\text {p}}^{\text {eq}}\right) \delta p, \end{aligned}$$

where \(j=\sqrt{-1}\), we obtain for \(\delta p=p \displaystyle \frac{e\delta \varphi _{\text {con}}}{K_{\text {B}}T}\) and \(\delta \varphi _{\text {con}}\) represents the potential difference at the GaSb QDs layer caused by the applied ac bias. Then, we can write the change of population as follows:

$$\begin{aligned} \delta {P_{\text {QD}}(t)}= N_{\text {QD}} \left( \displaystyle \frac{e\delta \varphi _{\text {con}}}{K_{\text {B}}T}\right) \displaystyle \frac{f_{\text {p}}^{\text {eq}}\left( 1-f_{\text {p}}^{\text {eq}}\right) }{1+j\omega \left( \displaystyle \frac{\left( 1-f_{\text {p}}^{\text {eq}}\right) }{e_{\text {p}}}\right) }. \end{aligned}$$

For a device with surface S the small applied voltage causes the modulation of the charge will fill and empty the GaSb QD levels, which will induce an ac current defined as \(\delta I=S_{\text {p}} e \displaystyle \frac{ \text {d}\delta {P_{\text {QD}}(t)} }{ \text {d }t }\)

By taking the real part of \((\displaystyle \frac{\delta I}{\delta V})\) we can determine the QD conductance G, which can be written by

$$\begin{aligned} G (\omega , T)=\alpha \displaystyle \frac{f_{\text {p}}^{\text {eq}}\left( 1-f_{\text {p}}^{\text {eq}}\right) }{K_{\text {B}}T}\displaystyle \frac{\omega ^{2} \tau }{1+ \omega ^{2} \tau ^{2}} \end{aligned}$$

where \(\tau =\displaystyle \frac{(1-f_{\text {p}}^{\text {eq}})}{e_{\text {p}}^{\text {th}}}\), \(\alpha =S_{\text {p}} q^{2}N_{\text {QD}}\beta\) and \(\beta =\displaystyle \frac{\delta \varphi _{\text {conf}}}{\delta V}\). We can note from the last expression the function \(f_{\text {p}}^{\text {eq}}(1-f_{\text {p}}^{\text {eq}})\) shows a peak when \(f_{\text {p}}^{\text {eq}}= \displaystyle \frac{1}{2}\) and the term \(\displaystyle \frac{\omega ^{2}\tau }{1+\omega ^{2}\tau ^{2}}\) has a maximum value when \(\omega \tau =1=2e_{\text {p}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boustanji, H., Jaziri, S. Type-II GaSb/GaAs quantum-dot intermediate band with extended optical absorption range for efficient solar cells. Appl. Phys. A 124, 121 (2018). https://doi.org/10.1007/s00339-017-1495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1495-z

Navigation