Skip to main content
Log in

Lattice location of implanted Co in heavily doped \(n^+\)- and \(p^+\)-type silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have studied the influence of electronic doping on the preferred lattice sites of implanted \({^{61}\text{Co}}\), and the related stabilities against thermal annealing, in silicon. Using the \(\beta ^-\) emission channeling technique we have identified Co on ideal substitutional (ideal S) sites, sites displaced from bond-centered towards substitutional (near-BC) sites and sites displaced from tetrahedral interstitial towards anti-bonding (near-T) sites. We show clearly that the fractions of Co on these lattice sites change with doping. While near-BC sites prevail in \(n^+\)-type Si, near-T sites are preferred in \(p^+\)-type Si. Less than \(\sim\)35% of Co occupies ideal S sites in both types of heavily doped silicon, showing that the majority of implanted Co forms complex defect structures. Implantation-induced defects seem to getter more efficiently Co in lightly doped n-type than in heavily doped \(n^+\)- or \(p^+\)-type silicon. The formation of CoB pairs in \(p^+\)-type silicon and its possible influence on the lattice sites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.M. Myers, M. Seibt, W. Schröter, J. Appl. Phys. 88, 3795 (2000)

    Article  ADS  Google Scholar 

  2. S. Pizzini, Sol. Energy Mater. Sol. Cells 94, 1528 (2010)

    Article  Google Scholar 

  3. E.R. Weber, Appl. Phys. A 30, 1 (1983)

    Article  ADS  Google Scholar 

  4. H. Lemke, K. Irmscher, ECS Trans. 3, 299 (2006)

    Article  Google Scholar 

  5. L. Scheffler, V. Kolkovsky, J. Weber, J. Appl. Phys. 113, 183714 (2013)

    Article  ADS  Google Scholar 

  6. K. Matsukawa, K. Shirai, H. Yamaguchi, H. Katayama-Yoshida, Phys. B Condens. Matter 401, 151 (2007)

    Article  ADS  Google Scholar 

  7. A.A. Istratov, E.R. Weber, Appl. Phys. A 66, 123 (1998)

    Article  ADS  Google Scholar 

  8. D.J. Silva, U. Wahl, J.G. Correia, L.M.C. Pereira, L.M. Amorim, M.R. da Silva, J.P. Araújo, Semicond. Sci. Technol. 29, 125006 (2014)

    Article  ADS  Google Scholar 

  9. Z.Z. Zhang, B. Partoens, K. Chang, F.M. Peeters, Phys. Rev. B 77, 155201 (2008)

    Article  ADS  Google Scholar 

  10. P.R. Banduru, J. Park, J.S. Lee, Appl. Phys. Lett. 89, 112502 (2006)

    Article  ADS  Google Scholar 

  11. V.N. Fedosseev, L.E. Berg, N. Lebas, O.J. Launila, M. Lindroos, R. Losito, B.A. Marsh, F.K. Österdahl, T. Pauchard, G. Tranströmer, J. Vannesjö, Nucl. Instrum. Methods Phys. Res. B 266(19), 4378 (2008)

    Article  ADS  Google Scholar 

  12. U. Wahl, J.G. Correia, S. Cardoso, J.G. Marques, A. Vantomme, G. Langouche, Nucl. Instrum. Methods. Phys. Res. Sect. B 136, 744 (1998)

    Article  ADS  Google Scholar 

  13. M.R. da Silva, U. Wahl, J.G. Correia, L.M. Amorim, L.M.C. Pereira, Rev. Sci. Instrum. 84, 073506 (2013)

    Article  ADS  Google Scholar 

  14. H. Bubert, L. Palmetshofer, G. Stingeder, M. Wielunski, Anal. Chem. 1001, 1562 (1991)

    Article  Google Scholar 

  15. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  16. D.J. Silva, U. Wahl, J.G. Correia, J.P. Araújo, J. Appl. Phys. 114, 103503 (2013)

    Article  ADS  Google Scholar 

  17. D.J. Silva, U. Wahl, J.G. Correia, L.M.C. Pereira, L.M. Amorim, E. Bosne, M.R. da Silva, J.P. Araújo, J. Appl. Phys. 115, 023504 (2014)

    Article  ADS  Google Scholar 

  18. J.L. Benton, T. Boone, D.C. Jacobson, P.J. Silverman, J.M. Rosamilia, C.S. Rafferty, S. Weinzierl, B. Vub, J. Electrochem. Soc. 148, G326 (2001)

    Article  Google Scholar 

  19. U. Wahl, A. Vantomme, G. Langouche, J.P. Araújo, L. Peralta, J.G. Correia, Appl. Phys. Lett. 77, 2142 (2000)

    Article  ADS  Google Scholar 

  20. D.J. Silva, U. Wahl, J.G. Correia, L.M. Amorim, S. Decoster, M.R. da Silva, L.M.C. Pereira, J.P. Araújo, Appl. Phys. A 122, 241 (2016)

    Article  ADS  Google Scholar 

  21. D. Gilles, W. Schröter, W. Bergholz, Phys. Rev. B 41, 5770 (1990)

    Article  ADS  Google Scholar 

  22. N. Pic, A. Danel, M.L. Polignano, G. Salva, M. Sardo, S. Rey, Solid State Phenom. 59–60, 373 (2004)

    Article  Google Scholar 

  23. M.L. Polignano, D. Caputo, D. Codegoni, V. Privitera, M. Riva, Solid State Phenom. 108–109, 571 (2005)

    Article  Google Scholar 

  24. R. Czaputa, H. Feichtinger, J. Oswald, Sol. State Comm. 47, 223 (1983)

    Article  ADS  Google Scholar 

  25. H. Nakashima, K. Hashimoto, J. Appl. Phys. 69, 1440 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by FCT-Portugal, project CERN/FIS-NUC/0004/2015, and by the European Union FP7-through ENSAR, contract 262010. Project Norte-070124-FEDER-000070, Fund for Scientific Research-Flanders and the KU Leuven BOF (CREA/14/013 and STRT/14/002) are acknowledged. D.J. Silva is thankful for FCT Grant SFRH/BD/69435/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel José da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, D.J.d., Wahl, U., Correia, J.G. et al. Lattice location of implanted Co in heavily doped \(n^+\)- and \(p^+\)-type silicon. Appl. Phys. A 123, 286 (2017). https://doi.org/10.1007/s00339-017-0870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0870-0

Keywords

Navigation