Skip to main content
Log in

Implantation induced defects and electrical properties of Sb-implanted ZnO

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Defects in Sb implanted ZnO single crystals have been studied by using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) and Raman scattering. Electrical properties of the samples were analyzed by Hall effect measurement. The results indicate that the annealed Sb-implanted sample is n-type with a free electron concentration of the same amplitude as the calculated implantation concentration. The well-known oxygen vacancy related deep level green PL band is suppressed in the as-implanted sample and recovers to the level close to the as-grown ZnO single crystal after annealing. These phenomena suggest that a large portion of as-implanted Sb atoms occupy oxygen lattice site in an unstable state and move to the interstitial site, forming the complex donor defect upon high temperature annealing, resulting in n-type conduction even if the implantation dose is quite high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y F, Bagnall D, Yao T F. ZnO as a novel photonic material for the UV region. Mater Sci Eng B-Solid State Mater Adv Technol, 2000, 75: 190–198

    Article  Google Scholar 

  2. Perkins C L, Lee S H, Li X N, et al. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. J Appl Phys, 2005, 97: 034907–1-7

    Article  Google Scholar 

  3. Kim K K, Kim H S, Hwang D K, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal. Appl Phys Lett, 2003, 83: 63–65

    Article  Google Scholar 

  4. Vaithianathan V, Hishita S, Park J Y, et al. Photoluminescence in phosphorous-implanted ZnO films. J Appl Phys, 2007, 102: 086107–1-3

    Article  Google Scholar 

  5. Braunstein G, Muraviev A, Saxena H, et al. p-type doping of zinc oxide by arsenic ion implantation. Appl Phys Lett, 2005, 87: 192103–1-3

    Article  Google Scholar 

  6. Minegishi K, Koiwai Y, Kikuchi Y, et al. Growth of p-type zinc oxide films by chemical vapor deposition. Jpn J Appl Phys Part 2-Lett, 1997, 36: L1453–L1455

    Article  Google Scholar 

  7. Vaithianathan V, Lee B T, Kim S S. Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Appl Phys Lett, 2005, 86: 062101–1-3

    Article  Google Scholar 

  8. Xiu F X, Yang Z, Mandalapu L J, et al. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Appl Phys Lett, 2005, 87: 152101–1-3

    Article  Google Scholar 

  9. Zhao Y W, Dong Z Y, Wei X C, et al. Single crystal growth and property of ZnO by chemical vapor transport method. J Syn Cryst, 2006, 35: 404–408

    Google Scholar 

  10. Zhao Y W, Dong Z Y, Wei X C, et al. Growth of ZnO single crystal by chemical vapor transport method. Chin J Semiconductors, 2006, 27: 336–339

    Google Scholar 

  11. Biersack J P, Haggmark L G. A Monte-Carlo computer-program for the transport of energetic ions in amorphous targets. Nucl Instrum Meth, 1980, 174: 257–269

    Article  Google Scholar 

  12. Ziegler J F, Ziegler M, Biersack J. SRIM-The stopping and range of ions in matter (2010). Mater Sci Eng B-Solid State Mater Adv Technol, 2010, 268: 1818–18

    Google Scholar 

  13. Look D C, Stutz C E, Bozada C A. Analytical 2-Layer Hall Analysis — Application to Modulation-Doped Field-Effect Transistors. J Appl Phys, 1993, 74: 311–314

    Article  Google Scholar 

  14. Look D C. Quantitative analysis of surface donors in ZnO. Surf Sci, 2007, 601: 5315–5319

    Article  Google Scholar 

  15. Xiu F X, Yang Z, Mandalapu L J, et al. Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy. Appl Phys Lett, 2005, 87: 252102–1-3

    Article  Google Scholar 

  16. Limpijumnong S, Zhang S B, Wei S H, et al. Doping by large-size-mismatched impurities: The microscopic origin of arsenic-or antimony-doped p-type zinc oxide. Phys Rev Lett, 2004, 92: 155504–1-4

    Article  Google Scholar 

  17. Lee J, Metson J, Evans P J, et al. Implanted ZnO thin films: Micro structure, electrical and electronic properties. Appl Surf Sci, 2007, 253: 4317–4321

    Article  Google Scholar 

  18. Joseph M, Tabata H, Saeki H, et al. Fabrication of the low-resistive p-type ZnO by codoping method. Physica B, 2001, 302–303: 140–148

    Article  Google Scholar 

  19. Mandalapu L J, Yang Z, Chu S, et al. Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes. Appl Phys Lett, 2008, 92: 122101–1-3

    Article  Google Scholar 

  20. Wei X C, Zhao Y W, Dong Z Y, et al. Investigation of native defects and property of bulk ZnO single crystal grown by a closed chemical vapor transport method. J Cryst Growth, 2008, 310: 639–645

    Article  Google Scholar 

  21. Ashrafi A, Ueta A, Avramescu A, et al. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers. Appl Phys Lett, 2000, 76: 550–552

    Article  Google Scholar 

  22. Pan X H, Guo W, Ye Z Z, et al. Optical properties of antimony-doped p-type ZnO films fabricated by pulsed laser deposition. J Appl Phys, 2009, 105: 113516–1-4

    Article  Google Scholar 

  23. Ashrafi A, Suemune I, Kumano H, et al. Nitrogen-doped p-type ZnO layers prepared with H2O vapor-assisted metalorganic molecular-beam epitaxy. Jpn J Appl Phys Part 2-Lett, 2002, 41: L1281–L1284

    Article  Google Scholar 

  24. Ryu Y R, Lee T S, White H W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl Phys Lett, 2003, 83: 87–89

    Article  Google Scholar 

  25. Cusc R, Alarcon-Llad E, Ibanez J, et al. Temperature dependence of Raman scattering in ZnO. Phys Rev B, 2007, 75: 165202–1-11

    Article  Google Scholar 

  26. Bundesmann C, Ashkenov N, Schubert M, et al. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Appl Phys Lett, 2003, 83: 1974–1976

    Article  Google Scholar 

  27. Damen T C, Porto S P S, Tell B. Raman effect in zinc oxide. Phys Rev, 1966, 142: 570–574

    Article  Google Scholar 

  28. Hasuike N, Fukumura H, Harima H, et al. Raman scattering studies on ZnO doped with Ga and N (codoping), and magnetic impurities. J Phys-Condes Matter, 2004, 16: S5807–S5810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Liu, T., Liu, J. et al. Implantation induced defects and electrical properties of Sb-implanted ZnO. Sci. China Technol. Sci. 58, 1333–1338 (2015). https://doi.org/10.1007/s11431-015-5868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-015-5868-2

Keywords

Navigation