Skip to main content
Log in

Ion beam lithography with gold and silicon ions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Different ion species deliver a different material sputtering yield and implantation depth, thus enabling focused ion beam (FIB) fabrication for diverse applications. Using newly developed FIB milling with double charged \(\hbox {Au}^{2+}\) and \(\hbox {Si}^{2+}\) ions, fabrication has been carried out on Au-sputtered films to define arrays of densely packed nanoparticles supporting optical extinction peaks at visible-IR wavelengths determined by the size, shape, and proximity of nanoparticles. Results are qualitatively compared with \(\hbox {Ga}^{+}\) milling. A possibility to use such ion implantation to tailor the etching rate of silicon is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Garcia-Vidal, L. Martin-Moreno, J. Pendry, Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A: Pure Appl. Opt. 7(2), S97 (2005)

    Article  ADS  Google Scholar 

  2. X. Shen, T.J. Cui, Ultrathin plasmonic metamaterial for spoof localized surface plasmons. Laser Photon. Rev. 8(1), 137–145 (2014)

    Article  Google Scholar 

  3. Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Focusing surface plasmons with a plasmonic lens. Nano Lett. 5(9), 1726–1729 (2005)

    Article  ADS  Google Scholar 

  4. P. Genevet, N. Yu, F. Aieta, J. Lin, M.A. Kats, R. Blanchard, M.O. Scully, Z. Gaburro, F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl. Phys. Lett. 100(1), 013101 (2012)

    Article  ADS  Google Scholar 

  5. T.J. Davis, D.E. Gómez, F. Eftekhari, All-optical modulation and switching by a metamaterial of plasmonic circuits. Opt. Lett. 39(16), 4938–4941 (2014)

    Article  ADS  Google Scholar 

  6. A.M. Funston, C. Novo, T.J. Davis, P. Mulvaney, Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9(4), 1651–1658 (2009)

    Article  ADS  Google Scholar 

  7. N. Mojarad, J. Gobrecht, Y. Ekinci, Beyond EUV lithography: a comparative study of efficient photoresists performance. Sci. Rep 5(9235) (2015)

  8. G. Seniutinas, G. Gervinskas, E. Constable, A. Krotkus, G. Molis, G. Valušis, R.A. Lewis, S. Juodkazis, THz photomixer with milled nanoelectrodes on LT-GaAs. Appl. Phys. A 117(2), 439–444 (2014)

    Article  Google Scholar 

  9. Y. Nishijima, J.B. Khurgin, L. Rosa, H. Fujiwara, S. Juodkazis, Randomization of gold nano-brick arrays: a tool for SERS enhancement. Opt. Express 21(11), 13502–13514 (2013)

    Article  ADS  Google Scholar 

  10. R. Buividas, P.R. Stoddart, S. Juodkazis, Laser fabricated ripple substrates for surface-enhanced Raman scattering. Annalen Physik 524(11), L5–L10 (2012)

    Article  ADS  Google Scholar 

  11. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, M. Kuittinen, Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys. Rev. Lett. 110(9), 093902 (2013)

    Article  ADS  Google Scholar 

  12. R. Czaplicki, J. MaÌkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, M. Kauranen, Second-harmonic generation from metal nanoparticles: Resonance enhancement versus particle geometry. Nano Lett. 15(1), 530–534 (2014)

    Article  ADS  Google Scholar 

  13. R.M. Bakker, H.-K. Yuan, Z. Liu, V.P. Drachev, A.V. Kildishev, V.M. Shalaev, R.H. Pedersen, S. Gresillon, A. Boltasseva, Enhanced localized fluorescence in plasmonic nanoantennae. Appl. Phys. Lett. 92(4), 043101 (2008)

    Article  ADS  Google Scholar 

  14. Y. Nishijima, J.B. Khurgin, L. Rosa, H. Fujiwara, S. Juodkazis, Tunable Raman selectivity via randomization of a rectangular pattern of nanodisks. ACS Photonics 1(10), 1006–1012 (2014)

    Article  Google Scholar 

  15. S. Bauerdick, L. Bruchhaus, P. Mazarov, A. Nadzeyka, R. Jede, Multispecies focused ion beam lithography system and its applications. J. Vac. Sci. Technol. B 31(6), 06F404/1-5 (2013)

    Article  Google Scholar 

  16. C. Chang, A. Sakdinawat, Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics. Nature Comm. 5, 4243 (2014)

    ADS  Google Scholar 

  17. W.A. Murray, W.L. Barnes, Plasmonic materials. Adv. Mat. 19(22), 3771–3782 (2007)

    Article  Google Scholar 

  18. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photon. Rev. 4(6), 795–808 (2010)

    Article  Google Scholar 

  19. Y. Nishijima, Y. Hashimoto, G. Seniutinas, L. Rosa, S. Juodkazis, Engineering gold alloys for plasmonics. Appl. Phys. A 117(2), 641–645 (2014)

    Article  Google Scholar 

  20. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107(3), 668–677 (2003)

    Article  Google Scholar 

  21. H.J. Huang, C.-P. Yu, H.C. Chang, K.P. Chiu, H. Ming Chen, R.S. Liu, D.P. Tsai, Plasmonic optical properties of a single gold nano-rod. Opt. Express 15(12), 7132–7139 (2007)

    Article  ADS  Google Scholar 

  22. E.K. Payne, K.L. Shuford, S. Park, G.C. Schatz, C.A. Mirkin, Multipole plasmon resonances in gold nanorods. J. Phys. Chem. B 110(5), 2150–2154 (2006)

    Article  Google Scholar 

  23. G. Seniutinas, R. Tomašiūnas, R. Czaplicki, B. Sahraoui, M. Daškevičienė, V. Getautis, Z. Balevičius, Arylmethylene-1, 3-indandione based molecular glasses: Third order optical non-linearity. Dyes Pigm. 95(1), 33–40 (2012)

    Article  Google Scholar 

  24. G. Navickaitė, G. Seniutinas, R. Tomašiūnas, R. Petruškevičius, V. Getautis, M. Daškevičienė, Photoinduced orientational dynamics of azophenylcarbazole molecules in polycarbonate. Dyes Pigm. 92(3), 1204–1211 (2012)

    Article  Google Scholar 

  25. G. Seniutinas, G. Gervinskas, A. Balčytis, F. Clark, Y. Nishijima, A. Krotkus, G. Molis, G. Valušis, S. Juodkazis, Nanoscale precision in ion milling for optical and terahertz antennas. In: SPIE OPTO. International Society for Optics and Photonics, pp. 93 740P–93 740P (2015)

  26. C.R. Marrian, D.M. Tennant, Nanofabrication. J. Va. Sci. Technol. A 21(5), S207–S215 (2003)

    Article  ADS  Google Scholar 

  27. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. (2015) (in press)

  28. S. Tongay, M. Lemaitre, J. Fridmann, A. Hebard, B. Gila, B. Appleton, Drawing graphene nanoribbons on SiC by ion implantation. Appl. Phys. Lett. 100(7), 073501 (2012)

    Article  ADS  Google Scholar 

  29. N. Chekurov, K. Grigoras, A. Peltonen, S. Franssila, I. Tittonen, The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching. Nanotechnology 20(6), 065307 (2009)

    Article  ADS  Google Scholar 

  30. W. McKenzie, J. Pethica, G. Cross, A direct-write, resistless hard mask for rapid nanoscale patterning of diamond. Diamond Related Mater. 20(5), 707–710 (2011)

    Article  ADS  Google Scholar 

  31. G. Sahu, Confinement in MeV Au2+ implanted Si: a Raman scattering study. Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 015002 (2014)

    ADS  Google Scholar 

  32. R. Charavel, J.-P. Raskin, Tuning of etching rate by implantation: Silicon, polysilicon and oxide. In: Ion Implantation Technology: 16th International Conference on Ion Implantation Technology-IIT 2006, vol. 866, no. 1. AIP Publishing, pp. 325–328 (2006)

  33. G. Gervinskas, G. Seniutinas, S. Juodkazis, Control of surface charge for high-fidelity nanostructuring of materials. Laser Photon. Rev. 7(6), 1049–1053 (2013)

    Article  Google Scholar 

  34. G. Gervinskas, G. Seniutinas, J.S. Hartley, S. Kandasamy, P.R. Stoddart, N.F. Fahim, S. Juodkazis, Surface-enhanced Raman scattering sensing on black silicon. Annalen Physik 525(12), 907–914 (2013)

    Article  ADS  Google Scholar 

  35. G. Seniutinas, G. Gervinskas, R. Verma, B.D. Gupta, F. Lapierre, P.R. Stoddart, F. Clark, S.L. McArthur, S. Juodkazis, Versatile SERS sensing based on black silicon. Opt. Express 23(5), 6763–6772 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge support by ARC Linkage LP120100161 and Discovery DP130101205, DP120102980 grants. SJ acknowledge a startup funding of Nanotechnology facility by Swinburne University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Seniutinas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seniutinas, G., Balčytis, A., Nishijima, Y. et al. Ion beam lithography with gold and silicon ions. Appl. Phys. A 122, 383 (2016). https://doi.org/10.1007/s00339-016-9866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9866-4

Keywords

Navigation