Skip to main content
Log in

Femtosecond laser sintering of copper nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ultrafast melting of copper nanoparticles (NPs) induced by a femtosecond laser pulse with duration of 100 fs and wavelength of 800 nm is investigated theoretically and experimentally. The Cu pattern fabricated from sintering of a Cu NP-dispersed film by the femtosecond laser at a repetition rate of 80 MHz is experimentally studied. A one-dimensional two-temperature model with temperature-dependent material properties, including the extended Drude model for dynamic optical properties and the thermophysical properties, is employed to simulate the particles ultrafast melting and re-solidification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Wunscher, R. Abbel, J. Perelaer, U.S. Schubert, Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J. Mater. Chem. C 2, 10232–10261 (2014)

    Article  Google Scholar 

  2. A. Watanabe, T. Miyashita, Formation of copper micro-wiring by laser direct writing. J. Photopolym. Sci. Technol. 20, 115–116 (2007)

    Article  Google Scholar 

  3. Z. Michael, E. Oleg, S. Amir, K. Zvi, Laser sintering of copper nanoparticles. J. Phys. D Appl. Phys. 47, 025501 (2014)

    Article  Google Scholar 

  4. S.J. Kim, D.-J. Jang, Laser-induced nanowelding of gold nanoparticles. Appl. Phys. Lett. 86, 033112 (2005)

    Article  ADS  Google Scholar 

  5. Y. Son, J. Yeo, H. Moon, T.W. Lim, S. Hong, K.H. Nam, S. Yoo, C.P. Grigoropoulos, D.-Y. Yang, S.H. Ko, Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Adv. Mater. 23, 3176–3181 (2011)

    Article  Google Scholar 

  6. H. Huang, M. Sivayoganathan, W.W. Duley, Y. Zhou, Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl. Surf. Sci. 331, 392–398 (2015)

    Article  ADS  Google Scholar 

  7. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, I. Zergioti, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics. Appl. Surf. Sci. 336, 157–162 (2015)

    Article  ADS  Google Scholar 

  8. R. Ebert, F. Ullmann, D. Hildebrandt, J. Schille, L. Hartwig, S. Kloetzer, A. Streek, H. Exner, Laser processing of tungsten powder with femtosecond laser radiation. J. Laser Micro Nanoeng. 7, 38–43 (2012)

    Article  Google Scholar 

  9. B. Nie, H. Huang, S. Bai, J. Liu, Femtosecond laser melting and resolidifying of high-temperature powder materials. Appl. Phys. A Mater. Sci. Process. 118, 37–41 (2015)

    Article  ADS  Google Scholar 

  10. C.W. Cheng, C.J. Huang, H.T. Cheng, C.N. Kuo, Fabrication of porous Ti parts with nanostructures from Ti powders by femtosecond laser pulses. J. Laser Micro Nanoeng. 10, 310–313 (2015)

    Article  Google Scholar 

  11. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B Opt. Phys. 14, 2716–2722 (1997)

    Article  ADS  Google Scholar 

  12. J. Yang, Y. Zhao, X. Zhu, Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion. Appl. Phys. A Mater. Sci. Process. 89, 571–578 (2007)

    Article  ADS  Google Scholar 

  13. J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Ultra-short pulse laser ablation of copper, silver and tungsten: experimental data and two-temperature model simulations. Appl. Phys. A Mater. Sci. Process. 103, 447–453 (2011)

    Article  ADS  Google Scholar 

  14. B. Wu, Y.C. Shin, A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 253, 4079–4084 (2007)

    Article  ADS  Google Scholar 

  15. Y. Zhang, J.K. Chen, Ultrafast melting and resolidification of gold particle irradiated by pico- to femtosecond lasers. J. Appl. Phys. 104, 054910 (2008)

    Article  ADS  Google Scholar 

  16. J. Huang, Y. Zhang, J.K. Chen, Size effects during femtosecond laser interaction with nanosized metal particles. J. Heat Transf. 134, 012401 (2011)

    Article  Google Scholar 

  17. V. Schmidt, W. Husinsky, G. Betz, Dynamics of laser desorption and ablation of metals at the threshold on the femtosecond time scale. Phys. Rev. Lett. 85, 3516–3519 (2000)

    Article  ADS  Google Scholar 

  18. K.M. Yoo, X.M. Zhao, M. Siddique, R.R. Alfano, D.P. Osterman, M. Radparvar, J. Cunniff, Femtosecond thermal modulation measurements of electron–phonon relaxation in niobium. Appl. Phys. Lett. 56, 1908–1910 (1990)

    Article  ADS  Google Scholar 

  19. Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Ultrashort laser pulse energy deposition in metal films with phase changes. Appl. Phys. Lett. 98, 191105 (2011)

    Article  ADS  Google Scholar 

  20. D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Interband and intraband (Drude) contributions to femtosecond laser absorption in aluminum. Phys. Rev. E 65, 016409 (2002)

    Article  ADS  Google Scholar 

  21. Z. Lin, L.V. Zhigilei, V. Celli, Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon nonequilibrium. Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  22. C.W. Cheng, S.Y. Wang, K.P. Chang, J.K. Chen, Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison. Appl. Surf. Sci. 361, 41–48 (2016)

    Article  ADS  Google Scholar 

  23. Y. Ren, J.K. Chen, Y. Zhang, Optical properties and thermal response of copper films induced by ultrashort-pulsed lasers. J. Appl. Phys. 110, 113102 (2011)

    Article  ADS  Google Scholar 

  24. Y. Zhang, J.K. Chen, An interfacial tracking method for ultrashort pulse laser melting and resolidification of a thin metal film. J. Heat Transf. 130, 062401 (2008)

    Article  Google Scholar 

  25. P.T. Mannion, J. Magee, E. Coyne, G.M. O’Connor, T.J. Glynn, The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air. Appl. Surf. Sci. 233, 275–287 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the MOST 103-2218-E-006-015 and MOST 103-2218-E-009-025-MY2 for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C.W., Chen, J.K. Femtosecond laser sintering of copper nanoparticles. Appl. Phys. A 122, 289 (2016). https://doi.org/10.1007/s00339-016-9814-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9814-3

Keywords

Navigation