Skip to main content
Log in

Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrashort pulse laser ablation of metallic targets is investigated theoretically through establishing a modified two-temperature model that takes into account both the temperature dependent electron–lattice coupling and the electron–electron-collision dominated electron diffusion processes for higher electron temperature regime. The electron–lattice energy coupling rate is found to reduce only slowly with increasing pulse duration, but grow rapidly with laser fluence, implying that the melting time of metallic materials decreases as the laser intensity increases. By taking phase explosion as the primary ablation mechanism, the predicted dependences of ablation rates on laser energy fluences for different laser pulse widths match very well with the experimental data. It is also found that during phase explosion the ablation rate is almost independent of the pulse width, whereas the ablation threshold fluence increases with the pulse duration even for femtosecond pulses. These theoretical results should be useful in having proper understanding of the ablation physics of ultrafast micromachining of metal targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.N. Chrichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tunnermann, Appl. Phys. A 63, 109 (1996)

    ADS  Google Scholar 

  2. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995)

    Article  ADS  Google Scholar 

  3. X. Zhu, A. Naumov, D. Villeneuve, P.B. Corkum, Appl. Phys. A 69, 367 (1999)

    Article  ADS  Google Scholar 

  4. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Fohl, S. Valette, C. Donnet, E. Audouard, F. Dausinger, Appl. Surf. Sci. 249, 322 (2005)

    Article  ADS  Google Scholar 

  5. M.I. Kaganov, I.M. Lifshitz, M.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)

    MATH  Google Scholar 

  6. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  7. P.B. Corkum, F. Brunel, N.K. Sherman, Phys. Rev. Lett. 61, 2886 (1998)

    Article  ADS  Google Scholar 

  8. S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997)

    ADS  Google Scholar 

  9. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Appl. Phys. A 69, S109 (1999)

    Article  ADS  Google Scholar 

  10. J.G. Fujimoto, J.M. Liu, E.P. Ippen, Phys. Rev. Lett. 53, 1837 (1984)

    Article  ADS  Google Scholar 

  11. T.Q. Qiu, C.L. Tien, J. Heat Transf. 115, 835 (1993)

    Article  Google Scholar 

  12. J.K. Chen, J.E. Beraun, Numer. Heat Transf. A 40, 1 (2001)

    Article  MATH  Google Scholar 

  13. A.P. Kanavin, I.V. Smetanin, V.A. Isakov, Y.V. Afanasiev, B.N. Chichkov, B. Wellegehausen, S. Nolte, C. Momma, A. Tünnermann, Phys. Rev. B 57, 14698 (1998)

    Article  ADS  Google Scholar 

  14. J. Yang, W. Liu, X. Zhu, to be published in Chinese Phys. (2007)

  15. S. Wellershoff, J. Hohlfeld, J. Gudde, E. Matthias, Appl. Phys. A 69, S99 (1999)

    Article  ADS  Google Scholar 

  16. W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor, Phys. Rev. Lett. 68, 2834 (1992)

    Article  ADS  Google Scholar 

  17. X.Y. Wang, D.M. Riffe, Y.S. Lee, M.C. Downer, Phys. Rev. B 15, 8016 (1994)

    Article  ADS  Google Scholar 

  18. P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)

    Article  ADS  Google Scholar 

  19. J.K. Chen, W.P. Latham, J.E. Beraun, J. Laser Appl. 17, 63 (2005)

    Article  Google Scholar 

  20. B. Rethfeld, K. Sokolowski-Tinten, D. Von Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004)

    Article  ADS  Google Scholar 

  21. J. Yang, Y. Zhao, X. Zhu, Appl. Phys. Lett. 88, 094101 (2006)

    Article  ADS  Google Scholar 

  22. R. Kelly, A. Miotello, Phys. Rev. E 60, 2616 (1999)

    Article  ADS  Google Scholar 

  23. N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197198, 41 (2002)

    Google Scholar 

  24. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998)

    Article  ADS  Google Scholar 

  25. J.K. Chen, J.E. Beraun, J. Opt. A Pure Appl. Opt. 5, 168 (2003)

    Article  ADS  Google Scholar 

  26. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  27. C. Schafer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404-1 (2002)

    Google Scholar 

  28. H.E. Elsayed-Ali, T.B. Norris, M.A. Pessot, G.A. Mourou, Phys. Rev. Lett. 58, 1212 (1987)

    Article  ADS  Google Scholar 

  29. B. Rethfeld, V.V. Temnov, K.S. Tinten, P. Tsu, D. von der Linde, S.I. Anisimov, S.I. Ashitkov, M.B. Agranat, J. Opt. Technol. 71, 348 (2004)

    ADS  Google Scholar 

  30. S.I. Ashitkov, M.B. Agranat, P.S. Kondratenko, S.I. Anisimov, V.E. Fortov, V.V. Temnov, K.S. Tinten, B. Rethfeld, P. Zhou, D. von der Linde, JETP Lett. 76, 461 (2002)

    Article  ADS  Google Scholar 

  31. Y.G. Yingling, P.F. Conforti, B.J. Garrison, Appl. Phys. A 79, 757 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Yang.

Additional information

PACS

52.50.Jm; 61.80.Az; 72.15.Cz; 79.20.Ap; 79.20.Ds

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhao, Y. & Zhu, X. Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion. Appl. Phys. A 89, 571–578 (2007). https://doi.org/10.1007/s00339-007-4141-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-4141-3

Keywords

Navigation