Skip to main content
Log in

Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The search for materials with suitable thermoelectric properties that are environmentally friendly and abundant led us to investigate p- and n-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films, produced by plasma-enhanced chemical vapor deposition. The Seebeck coefficient and power factor were measured at room temperature showing optimized values of 512 µV K−1 and 3.6 × 10−5 W m−1 K−2, for p-type, and −188 µV K−1 and 2.2 × 10−4 W m−1 K−2, for n-type thin films. The thermoelectric output power of one nc-Si:H pair of both n- and p-type materials is ~91 µW per material cm3, for a thermal gradient of 8 K. The output voltage and current values show a linear dependence with the number of pairs interconnected in series and/or parallel and show good integration performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Fulkerson, J. Moore, R. Williams, R. Graves, D. McElroy, Phys. Rev. 167, 765 (1968)

    Article  ADS  Google Scholar 

  2. T. Geballe, G. Hull, Phys. Rev. 98, 940 (1955)

    Article  ADS  Google Scholar 

  3. J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, NPG Asia Mater. 2, 152 (2010)

    Article  Google Scholar 

  4. P. Pichanusakorn, P. Bandaru, Mater. Sci. Eng. R Rep. 67, 19 (2010)

    Article  Google Scholar 

  5. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  6. S. Filonovich, H. Aguas, I. Bernacka-Wojcik, C. Gaspar, M. Vilarigues, L. Silva et al., Vacuum 83, 1253 (2009)

    Article  Google Scholar 

  7. S.A. Filonovich, H. Águas, T. Busani, A. Vicente, A. Araújo, D. Gaspar et al., Sci. Technol. Adv. Mater. 13, 045004 (2012)

    Article  Google Scholar 

  8. Y. He, C. Yin, G. Cheng, L. Wang, X. Liu, G. Hu, J. Appl. Phys. 75, 797 (1994)

    Article  ADS  Google Scholar 

  9. P.E. Hopkins, J.R. Serrano, L.M. Phinney, S.P. Kearney, T.W. Grasser, C.T. Harris, J. Heat Transf. 132, 081302 (2010)

    Article  Google Scholar 

  10. D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004)

    Article  ADS  Google Scholar 

  11. A.J. Schmidt, X. Chen, G. Chen, Rev. Sci. Instrum. 79, 114902 (2008)

    Article  ADS  Google Scholar 

  12. J. Loureiro, N. Neves, R. Barros, T. Mateus, R. Santos, F. Sergej et al., J. Mater. Chem. A 2, 6649 (2014)

    Article  Google Scholar 

  13. J. Loureiro, R. Santos, A. Nogueira, F. Wyczisk, L. Divay, S. Reparaz et al., J. Mater. Chem. A 2, 6456 (2014)

    Article  Google Scholar 

  14. A. Patterson, Phys. Rev. 56, 978 (1939)

    Article  ADS  Google Scholar 

  15. N. Neophytou, X. Zianni, H. Kosina, S. Frabboni, B. Lorenzi, D. Narducci, Nanotechnology 24, 205402 (2013)

    Article  ADS  Google Scholar 

  16. B.M. Foley, H.J. Brown-Shaklee, J.C. Duda, R. Cheaito, B.J. Gibbons, D. Medlin et al., Appl. Phys. Lett. 101, 231908 (2012)

    Article  ADS  Google Scholar 

  17. B.F. Donovan, B.M. Foley, J.F. Ihlefeld, J.P. Maria, P.E. Hopkins, Appl. Phys. Lett. 105(8), 082907 (2014)

    Article  ADS  Google Scholar 

  18. L. Xu, M.P. Garrett, B. Hu, J. Phys. Chem. C 116, 13020 (2012)

    Article  Google Scholar 

  19. T.M. Tritt, D. Weston, in Thermal Conductivity, ed. by T.M. Tritt (Springer, US, 2004), pp. 187–203

  20. Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, C. Dames, Nano Lett. 11, 2206 (2011)

    Article  ADS  Google Scholar 

  21. R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M.S. Brandt, M. Stutzmann, Phys. Status Solidi Rapid Res. Lett. 1, 262 (2007)

    Article  ADS  Google Scholar 

  22. N. Petermann, N. Stein, G. Schierning, R. Theissmann, B. Stoib, M.S. Brandt et al., J. Phys. D Appl. Phys. 44, 174034 (2011)

    Article  ADS  Google Scholar 

  23. Y. Hyun, Y. Park, W. Choi, J. Kim, T. Zyung, M. Jang, Nanotechnology 23(40), 405707 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Portuguese Agency of Innovation (Adi) under project QREN/3435-Nanoxides, by the Portuguese Science and Technology Foundation (FCT), Ministry for Education and Science (MEC), under PEst-C/CTM/LA0025/2011 (Strategic Project—LA 25—2011–2012) and mainly by the NANOTEG project: ENIAC/002/2010. This work was partially supported by the Commonwealth Research Commercialization Fund of Virginia (MF14S-012-En) and Financial Assistance Award No. 01-79-142414, awarded by the US Department of Commerce Economic Development Administration, to the University of Virginia. The content is solely the responsibility of the authors and does not necessarily represent the official views of the US Department of Commerce Economic Development Administration. The material is based upon work partially supported by the Air Force Office of Scientific Research under AFOSR Award No. 5010-UV-AFOSR-0067. The authors would like to thank Márcia Vilarigues from the Conservation Department of FCT/UNL for the micro-Raman measurements and insight.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joana Loureiro or Isabel Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loureiro, J., Mateus, T., Filonovich, S. et al. Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties. Appl. Phys. A 120, 1497–1502 (2015). https://doi.org/10.1007/s00339-015-9343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9343-5

Keywords

Navigation