Skip to main content

Advertisement

Log in

Investigation of Cr0.06(Sb4Te)0.94 alloy for high-speed and high-data-retention phase change random access memory applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of Cr doping on the structural and electrical properties of Cr x (Sb4Te)1−x materials have been investigated in order to solve the contradiction between thermal stability and fast crystallization speed of Sb4Te alloys. Cr0.06(Sb4Te)0.94 alloy is considered to be a potential candidate for phase change random access memory (PCM), as evidenced by a higher crystallization temperature (204 °C), a better data retention ability (137.6 °C for 10 years), a lower melting point (558 °C), a lower energy consumption, and a faster switching speed in comparison with those of Ge2Sb2Te5. A reversible switching between set and reset states can be realized by an electric pulse as short as 5 ns for Cr0.06(Sb4Te)0.94-based PCM cell. In addition, Cr0.06(Sb4Te)0.94 shows good endurance up to 1.1 × 104 cycles with a resistance ratio of about two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Raoux, W. Welnic, D. Ielmini, Chem. Rev. 110, 240 (2010)

    Article  Google Scholar 

  2. G. Atwood, Science 321, 210 (2008)

    Article  Google Scholar 

  3. M. Salinga, M. Wuttig, Science 332, 543 (2011)

    Article  ADS  Google Scholar 

  4. W. Wang, D. Loke, L. Shi, R. Zhao, H. Yang, L.T. Law, L.T. Ng, K.G. Lim, Y.C. Yeo, T.C. Chong, A.L. Lacaita, Sci. Rep. 2, 360 (2012)

    ADS  Google Scholar 

  5. R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, H. Tanida, Nano Lett. 10(2), 414 (2010)

    Article  ADS  Google Scholar 

  6. Kin-Fu Kao, Chain-Ming Lee, Ming-Jung Chen, Ming-Jinn Tsai, Tsung-Shune Chin, Adv. Mater. 21(17), 1695 (2009)

    Article  Google Scholar 

  7. M.H. Jang, S.J. Park, D.H. Lim, M.-H. Cho, K.H. Do, D.-H. Ko, H.C. Sohn, Appl. Phys. Lett. 95(1), 012102 (2009)

    Article  ADS  Google Scholar 

  8. Noboru Yamada, Eiji Ohno, Kenichi Nishiuchi, Nobuo Akahira, Masatoshi Takao, J. Appl. Phys. 69(5), 2849 (1991)

    Article  ADS  Google Scholar 

  9. H.S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98(12), 2201 (2010)

    Article  Google Scholar 

  10. M.H.R. Lankhorst, L. van Pieterson, M. van Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 42, 863 (2003)

    Article  ADS  Google Scholar 

  11. M.S. Youm, Y.T. Kim, Y.H. Kim, M.Y. Sung, Phys. Status Solidi (a) 205(7), 1636 (2008)

    Article  ADS  Google Scholar 

  12. L. van Pieterson, M.H.R. Lankhorst, M. van Schijndel, A.E.T. Kuiper, J.H.J. Roosen, J. Appl. Phys. 97, 8 (2005)

    Google Scholar 

  13. G.X. Wang, X. Shen, R.P. Wang, S.X. Dai, L.C. Wu, Y.M. Chen, T.F. Xu, Q.H. Nie, Appl. Phys. Lett. 102(13), 131902 (2013)

    Article  ADS  Google Scholar 

  14. K. Ren, F. Rao, Z.T. Song, S.L. Lu, C. Peng, M. Zhu, L.C. Wu, B. Liu, S.L. Feng, J. Alloys Compd. 594, 82 (2014)

    Article  Google Scholar 

  15. Kin-Fu Kao, Huai-Yu. Cheng, Chao-An Jong, Chi-Jui Lan, Tsung-Shune Chin, IEEE Trans. Magn. 43, 2 (2007)

    Article  ADS  Google Scholar 

  16. L.C. Wu, M. Zhu, F. Rao, Z.T. Song, X.L. Ji, D.N. Yao, Y. Cheng, S.L. Lv, S.N. Song, B. Liu, L. Xu, J. Appl. Phys. 114(12), 124302 (2013)

    Article  ADS  Google Scholar 

  17. M. Zhu, M. Xia, F. Rao, X. Li, L. Wu, X. Ji, S. Lv, Z. Song, S. Feng, H. Sun, S. Zhang, Nat. Commun. 5, 4086 (2014)

    ADS  Google Scholar 

  18. C. Peng, L. Wu, Z. Song, X. Zhou, M. Zhu, F. Rao, B. Liu, S. Feng, J. Non-Cryst. Solids 358, 2416–2419 (2012)

    Article  ADS  Google Scholar 

  19. X. Zhou, L. Wu, Z. Song, X. Zhou, F. Rao, K. Ren, C. Peng, X. Guo, B. Liu, S. Feng, Jpn. J. Appl. Phys. 50, 091402 (2011)

    ADS  Google Scholar 

  20. K. Kifune, Y. Kubota, T. Matsunaga, N. Yamada, Acta Crystallogr. B Struct. Sci. 61, 492 (2005)

    Article  Google Scholar 

  21. Kouichi Kifune, Tomoko Fujita, Yoshiki Kubota, Noboru Yamada, Toshiyuki Matsunaga, Acta Crystallogr. B 67(5), 381 (2011)

    Article  Google Scholar 

  22. You Yin, Hayato Sone, Sumio Hosaka, J. Appl. Phys. 102(6), 064503 (2007)

    Article  ADS  Google Scholar 

  23. J. Choi, H.S. Lee, T.S. Lee, S. Lee, W.M. Kim, D. Kim, Bk Cheong, Appl. Phys. Lett. 95(8), 081905 (2009)

    Article  ADS  Google Scholar 

  24. Y. Cheng, Z.T. Song, Y.F. Gu, S.N. Song, F. Rao, L.C. Wu, B. Liu, S.L. Feng, Appl. Phys. Lett. 99(26), 261914 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA09020402), National Key Basic Research Program of China (2013CBA01900, 2011CBA00607, 2011CB932804), National Integrate Circuit Research Program of China (2009ZX02023-003), National Natural Science Foundation of China (61261160500, 61376006, 51201178), and Science and Technology Council of Shanghai (13DZ2295700, 13ZR1447200, 14ZR1447500, 14DZ2294900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Song, S., Zhang, Z. et al. Investigation of Cr0.06(Sb4Te)0.94 alloy for high-speed and high-data-retention phase change random access memory applications. Appl. Phys. A 120, 537–542 (2015). https://doi.org/10.1007/s00339-015-9211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9211-3

Keywords

Navigation