Skip to main content
Log in

The crystallization mechanism of zirconium-doped Sb2Te3 material for phase-change random-access memory application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sb2Te3 (ST) as phase-change material has the advantage of high speed, but very poor thermal stability, which cannot be directly used for phase-change random-access memory (PCRAM). In this study, Zr1.5(Sb2Te3)98.5 (ZST) material was investigated for PCRAM application. Zr dopant can efficiently improve the thermal stability of ST alloy, stabilizing its amorphous state at room temperature. During annealing process, amorphous ZST film firstly transfers to face-centered cubic structure with small grain size, and following the second switching to hexagonal phase, it is delayed to 225 °C, which is more than 100 °C higher than ST alloy, confirming by in situ heating transmission electron microscopy. Furthermore, ZST-based PCRAM cell has good endurance up to 1.5 × 104 electrical cycles, a high amorphous resistance larger than 106 Ω and a resistance ratio of about 1.5 orders of magnitude. The reversible phase transition can be realized by a pulse of 100 ns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R.F. Freitas, W.W. Wilcke, IBM J. Res. Dev. 52, 439–447 (2008)

    Article  Google Scholar 

  2. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6(11), 824–832 (2007)

    Article  CAS  Google Scholar 

  3. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, J. Appl. Phys. 85(8), 5828–5833 (1999)

    Article  CAS  Google Scholar 

  4. H. Akinaga, H. Shima, Proc. IEEE 98(12), 2237–2251 (2010)

    Article  CAS  Google Scholar 

  5. Y. Arimoto, H. Ishiwara, MRS Bull. 29(11), 823–828 (2004)

    Article  CAS  Google Scholar 

  6. W. Zhang, R. Mazzarello, M. Wuttig, E. Ma, Nat. Rev. Mater. 4(3), 150–168 (2019)

    Article  CAS  Google Scholar 

  7. A. Lotnyk, M. Behrens, B. Rauschenbach, Nanoscale Adv. 1(10), 3836–3857 (2019)

    Article  CAS  Google Scholar 

  8. S.R. Ovshinsky, Phys. Rev. Lett. 21(20), 1450–1453 (1968)

    Article  Google Scholar 

  9. G. Atwood, Science 321(5886), 210–211 (2008)

    Article  CAS  Google Scholar 

  10. S. Kyrsta, R. Cremer, D. Neuschütz, M. Laurenzis, P.H. Bolivar, Appl. Surf. Sci. 179(1–4), 55–60 (2001)

    Article  CAS  Google Scholar 

  11. B. Liu, Z. Song, T. Zhang, S. Feng, B. Chen, Appl. Surf. Sci. 242(1), 62–69 (2005)

    Article  CAS  Google Scholar 

  12. Y. Wang, X. Chen, Y. Cheng, X. Zhou, S. Lv, Y. Chen, Y. Wang, M. Zhou, H. Peng, Y. Zhang, Z. Song, G. Feng, IEEE Electron Device Lett. 35(5), 536–538 (2014)

    Article  CAS  Google Scholar 

  13. F. Wang, T. Zhang, Z. Song, L. Wu, B. Liu, S. Feng, B. Chen, Jpn. J. Appl. Phys. 47(2), 843–846 (2008)

    Article  CAS  Google Scholar 

  14. Z. Li, C. Si, J. Zhou, H. Xu, Z. Sun, ACS Appl. Mater. Interfaces 8(39), 26126–26134 (2016)

    Article  CAS  Google Scholar 

  15. S. Hu, B. Liu, Z. Li, J. Zhou, Z. Sun, Comput. Mater. Sci. 165, 51–58 (2019)

    Article  Google Scholar 

  16. Y. Zheng, Y. Cheng, M. Zhu, X. Ji, Q. Wang, S. Song, Z. Song, W. Li, S. Feng, Appl. Phys. Lett. 108, 052107 (2016)

    Article  Google Scholar 

  17. B.J. Kooi, W.M.G. Groot, JThM De Hosson, J. Appl. Phys. 95, 924–932 (2004)

    Article  CAS  Google Scholar 

  18. Y. Zheng, M. Xia, Y. Cheng, F. Rao, K. Ding, W. Liu, Y. Jia, Z. Song, S. Feng, Nano Res. 9(11), 3453–3462 (2016)

    Article  CAS  Google Scholar 

  19. Y. Wang, Y. Zheng, G. Liu, T. Li, T. Guo, Y. Cheng, S. Lv, S. Song, K. Ren, Z. Song, Appl. Phys. Lett. 112, 133104 (2018)

    Article  Google Scholar 

  20. T. Guo, S. Song, Z. Song, X. Ji, Y. Xue, L. Chen, Y. Cheng, B. Liu, L. Wu, M. Qi, S. Feng, Adv. Electron Mater. 4(8), 1800083 (2018)

    Article  Google Scholar 

  21. F. Rao, K. Ding, Y. Zhou, Y. Zheng, M. Xia, S. Lv, Z. Song, S. Feng, I. Ronneberger, R. Mazzarello, W. Zhang, E. Ma, Science 358(6369), 1423–1427 (2017)

    Article  CAS  Google Scholar 

  22. T.L. Anderson, H.B. Krause, Acta Cryst. B 30(5), 1307–1317 (1974)

    Article  CAS  Google Scholar 

  23. Y. Lu, S. Song, Z. Song, L. Wu, B. Liu, S. Feng, X. Guo, J. Phys. D 44(14), 145102 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key Research and Development Program of China (2017YFA0303403, 2017YFA0206101, 2017YFB0405601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Qi, R., Cheng, Y. et al. The crystallization mechanism of zirconium-doped Sb2Te3 material for phase-change random-access memory application. J Mater Sci: Mater Electron 31, 5861–5865 (2020). https://doi.org/10.1007/s10854-019-02668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02668-0

Navigation