Skip to main content
Log in

High-quality processing of CFRP with a 1.1-kW picosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon fiber-reinforced plastic (CFRP) was processed with a unique ultrafast laser delivering 8-ps pulses and an average output power of up to 1.1 kW at a pulse repetition rate of 300 kHz corresponding to a maximum pulse energy of about 3.7 mJ. Heat accumulation effects become the major issue at such high average powers. In the presented work, heat accumulation resulting from pulse overlap and from repetitive scans was investigated. The results allow estimating both the feed rates necessary to avoid heat accumulation by consecutive pulses and the maximum number of scans allowed avoiding detrimental heat accumulation by the consecutive scans in order to maintain good quality of the processed parts. The capabilities of the used laser source are being demonstrated cutting a contour out of 2-mm CFRP with an effective average cutting speed of 0.9 m/min and thermal damage smaller than 20 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Pradere, J.C. Batsale, J.M. Goyhénèche, R. Pailler, S. Dilhaire, Thermal properties of carbon fibers at very high temperature. Carbon 47, 737–743 (2009)

    Article  Google Scholar 

  2. D.E. Kline, Thermal conductivity studies of polymers. J. Polym. Sci. 1, 441–450 (1961)

    Article  ADS  Google Scholar 

  3. B. Sundqvist, O. Sandberg, G. Bäckström, The thermal properties of an epoxy resin at high pressure and temperature. J. Phys. D Appl. Phys. 10, 1397–1403 (1977)

    Article  ADS  Google Scholar 

  4. C.A. Griffs, R.A. Masumura, C.I. Chang, Thermal response of graphite epoxy composite subjected to rapid heating. J. Compos. Mater. 15, 427–442 (1981)

    Article  ADS  Google Scholar 

  5. G. Herzberg, K.F. Herzfeld, E. Teller, The heat of sublimation of graphite. J. Phys. Chem. 41(2), 325–331 (1937)

    Article  Google Scholar 

  6. T.A. Trigg, Carbon fibre composites in rocket motor systems. in 3rd British Interplanetary Society Symposium on Material in Space Technology, Bristol, England (1969)

  7. C. Freitag, V. Onuseit, R. Weber, T. Graf, High-speed observation of the heat flow in CFRP during laser processing. Phys. Procedia 39, 171–178 (2012)

    Article  ADS  Google Scholar 

  8. R. Weber, M. Hafner, A. Michalowski, T. Graf, Minimum damage in CFRP laser processing. Phys. Procedia 12(2), 302–307 (2011)

    Article  ADS  Google Scholar 

  9. R. Weber, C. Freitag, T.V. Kononenko, M. Hafner, V. Onuseit, P. Berger, T. Graf, Short-pulse laser processing of CFRP. Phys. Procedia 39, 137–146 (2012)

    Article  ADS  Google Scholar 

  10. R. Weber, T. Graf, P. Berger, V. Onuseit, M. Wiedenmann, C. Freitag, A. Feuer, Heat accumulation during pulsed laser materials processing. Opt. Express 22(9), 11312–11324 (2014)

    Article  ADS  Google Scholar 

  11. J. Stock, M.F. Zaeh, M. Conrad, Remote laser cutting of CFRP: improvements in the cut surface. Phys. Procedia 39, 161–170 (2012)

    Article  ADS  Google Scholar 

  12. C. Freitag, R. Weber, T. Graf, Polarization dependence of laser interaction with carbon fibers and CFRP. Opt. Express 22(2), 1474–1479 (2014)

    Article  ADS  Google Scholar 

  13. L. Romoli, F. Fischer, R. Kling, A study on UV laser drilling of PEEK reinforced with carbon fibers. Opt. Lasers Eng. 50(3), 449–457 (2012)

    Article  Google Scholar 

  14. J. Finger, M. Weinand, D. Wortmann, Investigations on processing of carbon fiber reinforced plastics using ultrashort pulsed laser radiation with high average power. in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (ICALEO) (2013)

  15. A. Klotzbach, M. Hauser, E. Beyer, Laser cutting of carbon fiber reinforced polymers using highly brilliant laser beam sources. Phys. Procedia 12, 572–577 (2011)

    Article  ADS  Google Scholar 

  16. J.-P. Negel, A. Voss, M.A. Ahmed, D. Bauer, D. Sutter, A. Killi, T. Graf, 1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. Opt. Lett. 38(24), 5442–5445 (2013)

    Article  ADS  Google Scholar 

  17. B. Neuenschwander, B. Jaeggi, M. Schmid, U. Hunziker, B. Luescher, C. Nocera, Processing of industrially relevant non-metals with laser pulses in the range between 10 ps and 50 ps. in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (ICALEO) (2011)

Download references

Acknowledgments

This work was funded by the German Federal Ministry of Education and Research BMBF in the frame of the project ProCaV under Contract No. 13N11911 and in the frame of the project T4nPV under Contract No. 13N11787 and the Graduate School of Excellence advanced Manufacturing Engineering GSaME of the University of Stuttgart.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Freitag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitag, C., Wiedenmann, M., Negel, JP. et al. High-quality processing of CFRP with a 1.1-kW picosecond laser. Appl. Phys. A 119, 1237–1243 (2015). https://doi.org/10.1007/s00339-015-9159-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9159-3

Keywords

Navigation