Skip to main content
Log in

Laser-induced forward transfer of single-walled carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Vrijheid, D. Martinez, S. Manzanares, P. Dadvand, A. Schembari, J. Rankin, M. Nieuwenhuijsen, Environ. Health Perspect. 119(5), 598–606 (2011)

    Article  Google Scholar 

  2. T. Mattle, A. Hintennach, T. Lippert, A. Wokaun, Appl. Phys. A 110, 309–316 (2013)

    Article  ADS  Google Scholar 

  3. Q. Cao, J.A. Rogers, Adv. Mater. 21, 29–53 (2009)

    Article  Google Scholar 

  4. Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, Sens. Actuators B 149, 136–142 (2010)

    Article  Google Scholar 

  5. Z. Wu, Z. Chen, X. Du, J.M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J.R. Reynolds, D.B. Tanner, A.F. Hebard, A.G. Rinzler, Science 305, 1273–1276 (2004)

    Article  ADS  Google Scholar 

  6. M.P. Garrett, I.N. Ivanov, R.A. Gerhardt, A.A. Puretzky, D.B. Geohegan, Appl. Phys. Lett. 97, 163105 (2010)

    Article  ADS  Google Scholar 

  7. J.R.H. Shaw-Stewart, T. Mattle, T.K. Lippert, M. Nagel, F.A. Nuesch, A. Wokaun, J. Appl. Phys. 113, 043104 (2013)

    Article  ADS  Google Scholar 

  8. M. Makrygianni, E. Verrelli, N. Boukos, S. Chatzandroulis, D. Tsoukalas, I. Zergioti, Appl. Phys. A 110, 559–563 (2013)

    Article  ADS  Google Scholar 

  9. L. Rapp, F. Serein-Spirau, J.-P. Lère-Porte, A.P. Alloncle, P. Delaporte, F. Fages, C. Videlot-Ackermann, Org. Electron 13, 2035–2041 (2012)

    Article  Google Scholar 

  10. A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Appl. Phys. A 110, 751–755 (2013)

    Article  ADS  Google Scholar 

  11. B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D.B. Chrisey, A. Szabó, A. Nógrádi, Tissue Eng. 11(11–12), 1817–1823 (2005)

    Article  Google Scholar 

  12. C. Unger, M. Gruene, L. Koch, J. Koch, B.N. Chichkov, Appl. Phys. A 103, 271–277 (2011)

    Article  ADS  Google Scholar 

  13. C.B. Arnold, P. Serra, A. Piqué, Mater. Res. Soc. Bull. 32, 23–31 (2007)

    Article  Google Scholar 

  14. P. Serra, M. Colina, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Appl. Phys. Lett. 85(9), 1639–1641 (2004)

    Article  ADS  Google Scholar 

  15. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, Appl. Phys. Lett. 91, 061103 (2007)

    Article  ADS  Google Scholar 

  16. S.K. Chang-Jian, J.R. Ho, J.-W.J. Cheng, C.K. Sung, Nanotechnology 17, 1184–1187 (2006)

    Article  ADS  Google Scholar 

  17. C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Appl. Phys. Lett. 96, 041104 (2010)

    Article  ADS  Google Scholar 

  18. M. Nagel, R. Fardel, P. Feurer, M. Häberli, F.A. Nüesch, T. Lippert, A. Wokaun, Appl. Phys. A 92, 781–789 (2008)

    Article  ADS  Google Scholar 

  19. T. Lippert, Adv. Polym. Sci. 168, 51–246 (2004)

    Article  Google Scholar 

  20. T. Lippert, T. Dickinson, Chem. Rev. 103, 453–485 (2003)

    Article  Google Scholar 

  21. M.S. Brown, N.T. Kattamis, C.B. Arnold, J. Appl. Phys. 107, 083103 (2010)

    Article  ADS  Google Scholar 

  22. N.T. Kattamis, P.E. Purnick, R. Weiss, C.B. Arnold, Appl. Phys. Lett. 91, 171120 (2007)

    Article  ADS  Google Scholar 

  23. D. Cannatà, M. Benetti, F. Di Pietrantonio, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Lippert, Sens. Actuators B 173, 32–39 (2012)

    Article  Google Scholar 

  24. F. Di Pietrantonio, M. Benetti, D. Cannatà, E. Verona, A. Palla-Papavlu, V. Dinca, M. Dinescu, T. Mattle, T. Lippert, Sens. Actuators B 174, 158–167 (2012)

    Article  Google Scholar 

  25. A. Palla-Papavlu, V. Dinca, C. Luculescu, J. Shaw-Stewart, M. Nagel, T. Lippert, M. Dinescu, J. Opt. 12, 124014 (2010)

    Article  ADS  Google Scholar 

  26. A. Palla-Papavlu, V. Dinca, M. Dinescu, F. Di Pietrantonio, D. Cannatà, M. Benetti, E. Verona, Appl. Phys. A 105, 651–659 (2011)

    Article  ADS  Google Scholar 

  27. H. Chen, M.R. Golder, F. Wang, R. Jasti, A.K. Swan, Carbon 67, 203–213 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Scientific Exchange Programme between Switzerland and the New Member States of the European Union (Sciex-NMS), through the Rectors Conference of the Swiss Universities (CRUS) project ALECSA “Application of laser-induced forward transfer for the fabrication of a flexible carbon nanotube sensor array” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palla-Papavlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palla-Papavlu, A., Dinescu, M., Wokaun, A. et al. Laser-induced forward transfer of single-walled carbon nanotubes. Appl. Phys. A 117, 371–376 (2014). https://doi.org/10.1007/s00339-014-8473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8473-5

Keywords

Navigation