Skip to main content
Log in

Optimizing silicon-plasmonic waveguides for \(\chi ^{(3)}\) nonlinear applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hybrid silicon-plasmonic waveguides constitute an appealing platform for integrated photonic circuitry. They merge the technical maturity and prevalence of the SOI platform with the subwavelength confinement of plasmonic waveguides, essential for accessing enhanced nonlinear response at micron length-scales. Employing full-wave numerical simulations complemented with Schrödinger equation techniques, we propose nonlinear waveguide designs for Kerr-effect applications exhibiting minimized impairments due to free-carrier effects, thus raising the power-ceiling imposed on standard silicon waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q. Lin, O.J. Painter, G.P. Agrawal, Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15(25), 16604–16644 (2007)

    Article  ADS  Google Scholar 

  2. B.A. Daniel, G.P. Agrawal, Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects. J. Opt. Soc. Am. B 27(5), 956–965 (2010)

    Article  ADS  Google Scholar 

  3. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold, All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics 3, 216–219 (2009)

    Article  ADS  Google Scholar 

  4. M.L. Brongersma, R. Zia, J.A. Schuller, Plasmonics: the missing link between nanoelectronics and microphotonics. Appl. Phys. A 89(2), 221–223 (2007)

    Article  ADS  Google Scholar 

  5. R.F. Outlon, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496–500 (2008)

    Article  Google Scholar 

  6. A. Pitilakis, O. Tsilipakos, E.E. Kriezis, Nonlinear Effects in Hybrid Plasmonic Waveguides, in Proceedings of 14th International Conference on Transparent Optical Networks, Coventry, United Kingdom, July 2012, Art. No. 6254436.

  7. M. Wu, Z. Han, V. Vien, Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt. Express 18, 11728–11736 (2010)

    Article  ADS  Google Scholar 

  8. A. Boltasseva, V.S. Volkov, R.B. Nielsen, E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths. Opt. Express 16(8), 5252–5260 (2008)

    Article  ADS  Google Scholar 

  9. O. Tsilipakos, A. Pitilakis, A.C. Tasolamprou, T.V. Yioultsis, E.E. Kriezis, Computational techniques for the analysis and design of dielectric-loaded plasmonic circuitry. Opt. Quant. Electron. 42, 541–555 (2011)

    Article  Google Scholar 

  10. L. Yin, G.P. Agrawal, Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt. Lett. 32(14), 2031–2033 (2007)

    Article  ADS  Google Scholar 

  11. E. Dulkeith, Y.A. Vlasov, X. Chen, N.C. Panoiu, R.M. Osgood Jr, Self-phase-modulation in submicron silicon-on-insulator photonic wires. Opt. Express 14(12), 5524–5534 (2006)

    Article  ADS  Google Scholar 

  12. D. Perron, MWuC Horvath, D. Bachman, V. Van, All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Opt. Lett. 36(14), 2731–2733 (2011)

    Article  ADS  Google Scholar 

  13. G. Chen, P. Hui, Thermal conductivities of evaporated gold films on silicon and glass. Appl. Phys. Lett. 74(20), 2942–2944 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund-ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)-Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Pitilakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pitilakis, A., Tsilipakos, O. & Kriezis, E.E. Optimizing silicon-plasmonic waveguides for \(\chi ^{(3)}\) nonlinear applications. Appl. Phys. A 115, 475–479 (2014). https://doi.org/10.1007/s00339-013-8055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8055-y

Keywords

Navigation