Skip to main content
Log in

An investigation on shallow-etched InP-based hybrid nanoplasmonic waveguides for nonlinear applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Hybrid plasmonic waveguides (HPWs) can provide a good compromise between loss and confinement. The Kerr nonlinear effect is potentially useful for designing new optical devices such as optical switches. In this study, a new shallow-etched nonlinear hybrid plasmonic waveguide (NLHPW) on an InP substrate is proposed. Nonlinear analysis is carried out using numerical methods to verify the properties of various parameters, including the propagation length (Lp), effective mode area (Aeff), nonlinear coefficient (γ), and figure of merit (FoM). A maximum nonlinear coefficient of γ = 6.4 × 105 W−1 km−1 is obtained for the proposed NLHPW. Finally, the results obtained for various parameters such as the propagation length, nonlinear coefficient, and FoM of the proposed NLHPW are compared with two other NLHPWs, viz. silicon-on-insulator (SOI)-based and deeply etched InP-based designs, at a wavelength of 1550 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu, M., Han, Z., Van, V.: Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt. Express 18(11), 11728 (2010)

    Article  Google Scholar 

  2. Skogen, E.J., Raring, J.W., Morrison, G.B., Wang, C.S., Lal, V., Masanovic, M.L., Coldren, L.A.: Monolithically integrated active components: a quantum-well intermixing approach. IEEE J. Sel. Top. Quantum Electron. 11(2), 343 (2005)

    Article  Google Scholar 

  3. Van, V., Ibrahim, T.A., Absil, P.P., Johnson, F.G., Grover, R., Ho, P.T.: Optical signal processing using nonlinear semiconductor microring resonators. IEEE J. Sel. Top. Quantum Electron. 8(3), 705 (2002)

    Article  Google Scholar 

  4. Xu, Q., Lipson, M.: Carrier-induced optical bistability in silicon ring resonators. Opt. Lett. 31(3), 341 (2006)

    Article  Google Scholar 

  5. Mookherjea, S., Schneider, M.A.: The nonlinear microring add-drop filter. Opt. Express 16(19), 15130 (2008)

    Article  Google Scholar 

  6. Boyd, R.W.: Nonlinear Optics. Elsevier, Amsterdam (2003)

    Google Scholar 

  7. Michinobu, T., May, J.C., Lim, J.H., Boudon, C., Gisselbrecht, J.P., Seiler, P., Gross, M., Biaggio, I., Diederich, F.: A new class of organic donor–acceptor molecules with large third-order optical nonlinearities. Chem. Commun. 6, 737 (2005)

    Article  Google Scholar 

  8. Koos, C., Vorreau, P., Vallaitis, T., Dumon, P., Bogaerts, W., Baets, R., Esembeson, B., Biaggio, I., Michinobu, T., Diederich, F., Freude, W.: All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nat. Photonics 3(4), 216 (2009)

    Article  Google Scholar 

  9. Oulton, R.F., Sorger, V.J., Genov, D.A., Pile, D.F.P., Zhang, X.: A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat. Photonics 2(8), 496 (2008)

    Article  Google Scholar 

  10. Liang, D., Roelkens, G., Baets, R., Bowers, J.: Hybrid integrated platforms for silicon photonics. Materials 3(3), 1782 (2010)

    Article  Google Scholar 

  11. Koos, C., Jacome, L., Poulton, C., Leuthold, J., Freude, W.: Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15(10), 5976 (2007)

    Article  Google Scholar 

  12. Firouzabadi, M.D., Nikoufard, M., Tavakoli, M.B.: Optical Kerr nonlinear effect in InP-based hybrid plasmonic waveguides. Opt. Quant. Electron. 49(12), 390 (2017)

    Article  Google Scholar 

  13. Dai, D., He, S.: A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 17(19), 16646 (2009)

    Article  Google Scholar 

  14. Li, G., de Sterke, C.M., Palomba, S.: Figure of merit for Kerr nonlinear plasmonic waveguides. Laser Photonics Rev. 10(4), 639 (2016)

    Article  Google Scholar 

  15. Nikoufard, M., Heydari, N., Pourgholi, S., Khomami, A.R.: Novel hybrid plasmonic-based directional coupler on InP substrate. Photonics Nanostruct.-Fundam. Appl. 22, 9–17 (2016)

    Article  Google Scholar 

  16. Wang, J., Guan, X., He, Y., Shi, Y., Wang, Z., He, S., Holmström, P., Wosinski, L., Thylen, L., Dai, D.: Sub-μm 2 power splitters by using silicon hybrid plasmonic waveguides. Opt. Express 19(2), 838 (2011)

    Article  Google Scholar 

  17. Shahbazyan, Tigran V., Stockman, Mark I. (eds.): Plasmonics: Theory and Applications. Springer, Netherlands (2013)

    Google Scholar 

  18. Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  Google Scholar 

  19. Esembeson, B., Scimeca, M.L., Michinobu, T., Diederich, F., Biaggio, I.: A high-optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater. 20(23), 4584 (2008)

    Article  Google Scholar 

  20. Covey, J., et al.: All-optical switching with 1-ps response time in a DDMEBT enabled silicon grating coupler/resonator hybrid device. Opt. Express 22(20), 24530 (2014)

    Article  Google Scholar 

  21. McMahon, C., West, B.R.: Optimization of gap plasmonic waveguides for nonlinear applications. Photonics North 2010, 7750 (2010)

    Google Scholar 

  22. Afshar, V.S., Monro, T.M., de Sterke, C.M.: Understanding the contribution of mode area and slow light to the effective Kerr nonlinearity of waveguides. Opt. Express 21(15), 18558 (2013)

    Article  Google Scholar 

  23. Li, G., de Sterke, C.M., Palomba, S.: Performance comparison of Kerr nonlinear plasmonic waveguide configurations. In: Australian Conference on Optical Fibre Technology, Optical Society of America (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Nikoufard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firouzabadi, M.D., Nikoufard, M. & Tavakoli, M.B. An investigation on shallow-etched InP-based hybrid nanoplasmonic waveguides for nonlinear applications. J Comput Electron 19, 849–853 (2020). https://doi.org/10.1007/s10825-020-01453-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01453-1

Keywords

Navigation