Skip to main content
Log in

High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bi0.5Na0.5TiO3 (BNT)-doped BaFe0.5Nb0.5O3 (BFN) ceramics were synthesized by a two-step solid-state reaction. Temperature dependence of dielectric properties measured at different frequencies was investigated over broad temperature and frequency ranges. Impedance spectroscopy and universal dielectric response were employed to study the relaxation behavior and conductivity mechanism of the ceramics in a frequency range from 40 Hz to 100 MHz and a temperature range from 300 K to 800 K. The complex plane impedance data revealed the bulk and grain boundary contributions toward conductivity processes in the form of semicircular arcs. The high-temperature conductivity of ceramics is attributable to thermally activated second ionized oxygen vacancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. T.B. Adams, D.C. Sinclair, A.R. West, Adv. Mater. 14, 1321 (2002)

    Article  Google Scholar 

  3. S. Saha, T.P. Sinha, J. Phys. Condens. Matter 14, 249 (2002)

    Article  ADS  Google Scholar 

  4. J.B. Wu, C.W. Nan, Y.H. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  ADS  Google Scholar 

  5. H.B. Yang, Y.Y. Yang, Y. Lin, J.F. Zhu, F. Wang, Ceram. Int. 38, 1745 (2012)

    Article  Google Scholar 

  6. P. Kantha, N. Pisitpipathsin, K. Pengpat, G. Rujijanagul, R. Guo, A.S. Bhalla, Ferroelectrics 425, 27 (2011)

    Article  Google Scholar 

  7. N.K. Singh, P. Kumar, R. Rai, J. Alloys Compd. 509, 2957 (2011)

    Article  Google Scholar 

  8. U. Intatha, S. Eitssayeamb, J. Wang, T. Tunkasiri, Curr. Appl. Phys. 10, 21 (2010)

    Article  ADS  Google Scholar 

  9. N.K. Singh, P. Kumar, R. Rai, A.L. Kholkin, Adv. Mater. Lett. 3, 315 (2012)

    Article  Google Scholar 

  10. N.K. Singh, P. Kumar, A.K. Sharma, R.N.P. Choudhary, Mater. Sci. Appl. 2, 1593 (2011)

    Google Scholar 

  11. I.P. Raevski, S.A. Prosandeev, A.S. Bogatin, M.A. Malitskaya, L. Jastrabik, J. Appl. Phys. 93, 4130 (2003)

    Article  ADS  Google Scholar 

  12. Z. Wang, X.M. Chen, L. Ni, X.Q. Liu, Appl. Phys. Lett. 90, 022904 (2007)

    Article  ADS  Google Scholar 

  13. M. Gangulya, S. Paridaa, E. Sinhaa, S.K. Routa, A.K. Simanshub, A. Hussainc, I.W. Kimc, Mater. Chem. Phys. 131, 535 (2011)

    Article  Google Scholar 

  14. L.J. Liu, H.Q. Fan, L. Wang, X.L. Chen, P.Y. Fang, Philos. Mag. 88, 537 (2008)

    Article  ADS  Google Scholar 

  15. L.J. Liu, H.Q. Fan, P.Y. Fang, L. Jin, Solid State Commun. 142, 573 (2007)

    Article  ADS  Google Scholar 

  16. L.J. Liu, L. Fang, Y.M. Huang, Y.H. Li, D.P. Shi, S.Y. Zheng, S.S. Wu, C.Z. Hu, J. Appl. Phys. 110, 094101 (2011)

    Article  ADS  Google Scholar 

  17. Y.H. Li, L. Fang, L.J. Liu, Y.M. Huang, C.Z. Hu, Mater. Sci. Eng. B 177, 673 (2012)

    Article  Google Scholar 

  18. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Spec. Top. 180, 61 (2010)

    Article  Google Scholar 

  19. M. Pastor, J. Alloys Compd. 463, 323 (2008)

    Article  Google Scholar 

  20. L.J. Liu, Y.M. Huang, C.X. Su, L. Fang, M.X. Wu, C.Z. Hu, Appl. Phys. A 104, 1047 (2011)

    Article  ADS  Google Scholar 

  21. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  ADS  Google Scholar 

  22. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  23. A.R. Long, Adv. Phys. 31, 553 (1982)

    Article  ADS  Google Scholar 

  24. A.K. Jonscher, J. Phys. D, Appl. Phys. 32, R57 (1999)

    Article  ADS  Google Scholar 

  25. R. Waser, T. Baiatu, K.H. Hardtl, J. Am. Ceram. Soc. 73, 1645 (1990)

    Article  Google Scholar 

  26. A.E. Paladino, J. Am. Ceram. Soc. 48, 476 (1965)

    Article  Google Scholar 

  27. C. Ang, Z. Yu, L.E. Cross, Phys. Rev. B 62, 228 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (51002036, 21061004, and 50962004), by the Natural Science Foundation of Guangxi (C013002, BA053007), by the program for Excellent Talents in Guangxi Higher Education Institutions, and by the Projects of Department of Science and Technology of Guangxi (0842003 and 09-007-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laijun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Shi, D., Liu, L. et al. High-temperature impedance spectroscopy of BaFe0.5Nb0.5O3 ceramics doped with Bi0.5Na0.5TiO3 . Appl. Phys. A 114, 891–896 (2014). https://doi.org/10.1007/s00339-013-7735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7735-y

Keywords

Navigation