Skip to main content

Advertisement

Log in

Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Novel concepts of nonlinear-optical (NLO) photonic metamaterials (MMs) are proposed. They concern with greatly enhanced coherent NLO energy exchange between ordinary and backward waves (BWs) through the frequency-conversion processes. Two different classes of materials which support BWs are considered: crystals that support optical phonons with negative group velocity and MMs with specially engineered spatial dispersion. The possibility to replace plasmonic NLO MMs enabling magnetic response at optical frequencies, which are very challenging to engineer, by the ordinary readily available crystals, are discussed. The possibility to mimic extraordinary NLO frequency-conversion propagation processes attributed to negative-index MMs (NIMs) is shown in some of such crystals, if optical phonons with negative group velocity and a proper phase-matching geometry are implemented. Here, optical phonons are used as one of the coupled counterparts instead of backward electromagnetic waves (BEMWs). The appearance of BEMWs in metaslabs made of carbon nanotubes, the possibilities and extraordinary properties of BW second harmonic generation in such MMs is another option of nonmagnetic NIMs, which is described too. Among the applications of the proposed photonic materials is the possibility of creation of a family of unique BW photonic devices such as frequency doubling metamirror and Raman amplifiers with greatly improved efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.K. Popov, Nonlinear optics of backward waves and extraordinary features of plasmonic nonlinear-optical microdevices. Eur. Phys. J. D 58, 263–274 (2010) (topical issue on Laser Dynamics and Nonlinear Photonics)

    Article  ADS  Google Scholar 

  2. A.K. Popov, V.M. Shalaev, Merging nonlinear optics and negative-index metamaterials. Proc. SPIE 8093-6, 1–27 (2011)

    Google Scholar 

  3. I.V. Shadrivov, A.A. Zharov, Yu.S. Kivshar, Second-harmonic generation in nonlinear left-handed metamaterials. J. Opt. Soc. Am. B 23, 529–534 (2006)

    Article  ADS  Google Scholar 

  4. M. Scalora, G. D’Aguanno, M. Bloemer, M. Centini, N. Mattiucci, D. de Ceglia, Yu.S. Kivshar, Dynamics of short pulses and phase matched second harmonic generation in negative index materials. Opt. Express 14, 4746–4756 (2006)

    Article  ADS  Google Scholar 

  5. A.K. Popov, V.V. Slabko, V.M. Shalaev, Second harmonic generation in left-handed metamaterials. Laser Phys. Lett. 3, 293–296 (2006)

    Article  ADS  Google Scholar 

  6. A.K. Popov, V.M. Shalaev, Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification. Appl. Phys. B, Lasers Opt. 84, 131–137 (2006)

    Article  ADS  Google Scholar 

  7. A.K. Popov, V.M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31, 2169–2171 (2006)

    Article  ADS  Google Scholar 

  8. A.K. Popov, S.A. Myslivets, T.F. George, V.M. Shalaev, Four-wave mixing, quantum control, and compensating losses in doped negative-index photonic metamaterials. Opt. Lett. 32, 3044–3046 (2007)

    Article  ADS  Google Scholar 

  9. A.K. Popov, S.A. Myslivets, Transformable broad-band transparency and amplification in negative-index films. Appl. Phys. Lett. 93, 191117(3) (2008)

    ADS  Google Scholar 

  10. A.K. Popov, S.A. Myslivets, V.M. Shalaev, Resonant nonlinear optics of backward waves in negative-index metamaterials. Appl. Phys. B, Lasers Opt. 96, 315–323 (2009)

    Article  ADS  Google Scholar 

  11. A.K. Popov, S.A. Myslivets, V.M. Shalaev, Microscopic mirrorless negative-index optical parametric oscillator. Opt. Lett. 34(8), 1165–1167 (2009)

    Article  ADS  Google Scholar 

  12. A.K. Popov, S.A. Myslivets, V.M. Shalaev, Plasmonics: nonlinear optics, negative phase and transformable transparency (Invited Paper), in Plasmonics: Nanoimaging, Nanofabrication, and Their Applications V, ed. by S. Kawata, V.M. Shalaev, D.P. Tsai. Proc. of SPIE, vol. 7395, p. 73950Z-1(12) (2009)

    Chapter  Google Scholar 

  13. A.K. Popov, S.A. Myslivets, V.M. Shalaev, Coherent nonlinear optics and quantum control in negative-index metamaterials. J. Opt. A, Pure Appl. Opt. 11, 114028(13) (2009)

    ADS  Google Scholar 

  14. A.K. Popov, S.A. Myslivets, Numerical simulations of negative-index nanocomposites and backward-wave photonic microdevices, in ICMS 2010: International Conference on Modeling and Simulation. Proc. of WASET, vol. 37, pp. 107–121 (2010). http://www.waset.org/journals/waset/v37/v37-16.pdf

    Google Scholar 

  15. A.K. Popov, T.F. George, Computational studies of tailored negative-index metamaterials and microdevices, in Computational Studies of New Materials II: From Ultrafast Processes and Nanostructures to Optoelectronics, Energy Storage and Nanomedicine, ed. by T.F. George, D. Jelski, R.R. Letfullin, G. Zhang (World Scientific, Singapore, 2011)

    Google Scholar 

  16. A.I. Maimistov, I.R. Gabitov, E.V. Kazantseva, Quadratic solitons in media with negative refractive index. Opt. Spectrosc. 102, 90–97 (2007)

    Article  ADS  Google Scholar 

  17. A.I. Maimistov, I.R. Gabitov, Nonlinear optical effects in artificial materials. Eur. Phys. J. Spec. Top. 147, 265–286 (2007)

    Article  Google Scholar 

  18. S.O. Elyutin, A.I. Maimistov, I.R. Gabitov, On the third harmonic generation in a medium with negative pump wave refraction. J. Exp. Theor. Phys. 111, 157–169 (2010)

    Article  ADS  Google Scholar 

  19. L.I. Mandelstam, Group velocity in a crystal lattice. Ž. èksp. Teor. Fiz. 15, 475–478 (1945)

    MathSciNet  Google Scholar 

  20. M.I. Shalaev, S.A. Myslivets, V.V. Slabko, A.K. Popov, Negative group velocity and three-wave mixing in dielectric crystals. Opt. Lett. 36, 3861–3863 (2011)

    Article  ADS  Google Scholar 

  21. Y.R. Shen, N. Bloembergen, Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  22. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, Amsterdam, 2008)

    Google Scholar 

  23. D.L. Bobroff, Coupled-modes analysis of the phonon–photon parametric backward-wave oscillator. J. Appl. Phys. 36, 1760–1769 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  24. J.B. Khurgin, Mirrorless magic. Nat. Photonics 1, 446–448 (2007)

    Article  ADS  Google Scholar 

  25. V.S. Gorelik, Contemporary Problems of Raman Spectroscopy (Nauka Publishing Co., Moscow, 1978), pp. 28–47 (in Russian)

    Google Scholar 

  26. E. Anastassakis, S. Iwasa, E. Burstein, Electric-field-induced infrared absorption in diamond. Phys. Rev. Lett. 17, 1051–1054 (1966)

    Article  ADS  Google Scholar 

  27. Y. Chen, J.D. Lee, Determining material constants in micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 41, 871–886 (2003)

    Article  Google Scholar 

  28. V.M. Agranovich, Y.R. Shen, R.H. Baughman, A.A. Zakhidov, Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004)

    Article  ADS  Google Scholar 

  29. V.M. Agranovich, Yu.N. Gartstein, Spatial dispersion and negative refraction of light. Phys. Uspekhi, 176, 1051–1068 (2006) (also in Physics of Negative Refraction, ed. by C.M. Krowne, Y. Zhang (Springer, 2007))

    Article  Google Scholar 

  30. I. Nefedov, S. Tretyakov, Ultrabroadband electromagnetically indefinite medium formed by aligned carbon nanotubes. Phys. Rev. B 84, 113410 (2011)

    Article  ADS  Google Scholar 

  31. P.A. Belov, A.A. Orlov, A.V. Chebykin, Yu.S. Kivshar, Spatial dispersion in layered metamaterials, in Proceedings of the International Conference on Electrodynamics of Complex Materials, for Advanced Technologies, PLASMETA’11, September 21–26, Samarkand, Uzbekistan (2011), pp. 30–31

    Google Scholar 

  32. I.S. Nefedov, Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes. Phys. Rev. B 82, 155423(7) (2010)

    Article  ADS  Google Scholar 

  33. I.S. Nefedov, S.A. Tretyakov, Effective medium model for two-dimensional periodic arrays of carbon nanotubes. Photonics Nanostruct. Fundam. Appl. 9, 374–380 (2011) (TaCoNa-Photonics 2010)

    Article  ADS  Google Scholar 

  34. P.A. Belov, R. Marques, S.I. Maslovski, I.S. Nefedov, M. Silveirinha, C.R. Simovski, S.A. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit. Phys. Rev. B 67, 113103 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the U.S. National Science Foundation under Grant No. ECCS-1028353, by the US Air Force Office of Scientific Research under Grant No. FA9550-12-1-298; by the Presidium of the Russian Academy of Sciences under Project No. 24.31, by the Ministry of Science under Federal Research Program No. 14.V37.21.0730 and by the Siberian Division of the Russian Academy of Sciences and Siberian Federal University under Integration Project No. 101; and by the Academy of Finland and Nokia through the Center-of-Excellence program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander K. Popov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, A.K., Shalaev, M.I., Myslivets, S.A. et al. Enhancing coherent nonlinear-optical processes in nonmagnetic backward-wave materials. Appl. Phys. A 109, 835–840 (2012). https://doi.org/10.1007/s00339-012-7390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7390-8

Keywords

Navigation