Skip to main content
Log in

Deposition and characterization of lines printed through laser-induced forward transfer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The possibility of printing two-dimensional micropatterns of biomolecule solutions is of great interest in many fields of research in biomedicine, from cell-growth and development studies to the investigation of the mechanisms of communication between cells. Although laser-induced forward transfer (LIFT) has been extensively used to print micrometric droplets of biological solutions, the fabrication of complex patterns depends on the feasibility of the technique to print micron-sized lines of aqueous solutions.

In this study we investigate such a possibility through the analysis of the influence of droplet spacing of a water and glycerol solution on the morphology of the features printed by LIFT. We prove that it is indeed possible to print long and uniform continuous lines by controlling the overlap between adjacent droplets. We show how, depending on droplet spacing, several printed morphologies are generated, and we offer, in addition, a simple explanation of the observed behavior based on the jetting dynamics characteristic of the LIFT of liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Kundu, S.C. Kundu, Prog. Polym. Sci. 35, 1116–1127 (2010)

    Article  Google Scholar 

  2. D.B. Weibel, W.R. DiLuzio, G.M. Whitesides, Nat. Rev., Microbiol. 5, 209–218 (2007)

    Article  Google Scholar 

  3. E.A. Roth, T. Xu, M. Das, C. Gregory, J.J. Hickman, T. Boland, Biomaterials 25, 3707–3715 (2004)

    Article  Google Scholar 

  4. D. Soltman, V. Subramanian, Langmuir 24, 2224–2231 (2008)

    Article  Google Scholar 

  5. C.C. Wu, D.N. Reinhoudt, C. Otto, V. Subramaniam, A.H. Velders, Small 7(8), 989–1002 (2011)

    Article  Google Scholar 

  6. S. Lenhert, C.A. Mirkin, H. Fuchs, Scanning Microsc. 32, 15–23 (2010)

    Google Scholar 

  7. D.B. Chrisey, A. Piqué, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103(2), 553–576 (2003)

    Article  Google Scholar 

  8. P. Serra, M. Colina, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Appl. Phys. Lett. 85, 1639–1641 (2004)

    Article  ADS  Google Scholar 

  9. M. Colina, P. Serra, J.M. Fernández-Pradas, L. Sevilla, J.L. Morenza, Biosens. Bioelectron. 20, 1638–1642 (2005)

    Article  Google Scholar 

  10. J.A. Barron, H.D. Young, D.D. Dlott, M.M. Darfler, D.B. Krizman, B.R. Ringeisen, Proteomics 5(16), 4138–4144 (2005)

    Article  Google Scholar 

  11. I. Zergioti, A. Karaiskou, D.G. Papazoglou, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos, Appl. Phys. Lett. 86, 163902 (2005)

    Article  ADS  Google Scholar 

  12. V. Dinca, A. Ranella, M. Farsari, D. Kafetzopoulous, M. Dinescu, A. Popescu, C. Fotakis, Biomed. Microdevices 10, 719–725 (2008)

    Article  Google Scholar 

  13. C.B. Arnold, P. Serra, A. Piqué, Mater. Res. Soc. Bull. 32, 23–31 (2007)

    Article  Google Scholar 

  14. A. Palla-Papavlu, I. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, M. Dinescu, Appl. Phys. A 102, 651–659 (2011)

    Article  ADS  Google Scholar 

  15. A. Doraiswamy, R.J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R.C.Y. Auyeung, D.B. Chrisey, Appl. Surf. Sci. 252, 4743–4747 (2006)

    Article  ADS  Google Scholar 

  16. N.T. Kattamis, P.E. Purnick, R. Weiss, C.B. Arnold, Appl. Phys. Lett. 91, 171120 (2007)

    Article  ADS  Google Scholar 

  17. B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D.B. Chrisey, A. Szabó, A. Nógrádi, Tissue Eng. 11(11–12), 1817–1823 (2005)

    Article  Google Scholar 

  18. J.M. Fernández-Pradas, M. Colina, P. Serra, J. Domınguez, J.L. Morenza, Thin Solid Films 27, 453–454 (2004)

    Google Scholar 

  19. C. Unger, M. Gruene, L. Koch, J. Koch, B.N. Chichkov, Appl. Phys. A 103, 271–277 (2011)

    Article  ADS  Google Scholar 

  20. M. Duocastella, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Appl. Phys. A 93, 453 (2008)

    Article  Google Scholar 

  21. M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, J. Appl. Phys. 106, 084907 (2009)

    Article  ADS  Google Scholar 

  22. M. Duocastella, J.M. Fernández-Pradas, J.L. Morenza, P. Serra, Thin Solid Films 518, 5321–5325 (2010)

    Article  ADS  Google Scholar 

  23. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479–487 (2012)

    Article  ADS  Google Scholar 

  24. H. Kim, R.C.Y. Auyeung, S.H. Lee, A.L. Huston, A. Pique, J. Phys. D, Appl. Phys. 43, 085101 (2010)

    Article  ADS  Google Scholar 

  25. L. Rapp, J. Ailuno, A.P. Alloncle, P. Delaporte, Opt. Express 19(22), 21563–21574 (2011)

    Article  ADS  Google Scholar 

  26. M. Duocastella, H. Kim, P. Serra, A. Piqué, Appl. Phys. A 106, 471–478 (2012)

    Article  ADS  Google Scholar 

  27. M. Duocastella, M. Colina, J.M. Fernández-Pradas, P. Serra, J.L. Morenza, Appl. Surf. Sci. 253, 7855–7859 (2007)

    Article  ADS  Google Scholar 

  28. B.J. Kang, J.H. Oh, Thin Solid Films 518, 2890–2896 (2010)

    Article  ADS  Google Scholar 

  29. H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283, 46–49 (1999)

    Article  ADS  Google Scholar 

  30. P.C. Duineveld, J. Fluid Mech. 477, 175–200 (2003)

    Article  ADS  MATH  Google Scholar 

  31. J. Stringer, B. Derby, Langmuir 26(12), 10365–10372 (2010)

    Article  Google Scholar 

  32. J.-T. Wu, S.L.-C. Hsu, M.-H. Tsai, W.-S. Hwang, J. Phys. Chem. C 115, 10940–10945 (2011)

    Article  Google Scholar 

  33. K.Y. Shin, S.H. Lee, J.H. Oh, J. Micromech. Microeng. 21, 045012 (2011)

    Article  ADS  Google Scholar 

  34. A.M.J. van den Berg, A.W.M. de Laat, P.S. Smith, J. Perelaer, U.S. Schubert, J. Mater. Chem. 17, 677–683 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by MCI of the Spanish Government (Projects MAT2010-15905 and CSD2008-00023), by Fondo Europeo de Desarrollo Regional (FEDER), and by the EU project eLIFT (Grant agreement 247868).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palla-Papavlu, A., Córdoba, C., Patrascioiu, A. et al. Deposition and characterization of lines printed through laser-induced forward transfer. Appl. Phys. A 110, 751–755 (2013). https://doi.org/10.1007/s00339-012-7279-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7279-6

Keywords

Navigation