Skip to main content
Log in

Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microscopic mechanisms and optimization of metal nanoparticle size distribution control using femtosecond laser pulse trains are studied by molecular dynamics simulations combined with the two-temperature model. Various pulse train designs, including subpulse numbers, separations, and energy distributions are compared, which demonstrate that the minimal mean nanoparticle sizes are achieved at the maximal subpulse numbers with uniform energy distributions. Femtosecond laser pulse trains significantly alter the film thermodynamical properties, adjust the film phase change mechanisms, and hence control the nanoparticle size distributions. As subpulse numbers and separations increase, alternation of film thermodynamical properties suppresses phase explosion, favors critical point phase separation, and significantly reduces mean nanoparticle size distributions. Correspondingly, the relative ratio of two phase change mechanisms causes two distinct nanoparticle size control regimes, where phase explosion leads to strong nanoparticle size control, and increasing ratio of critical point phase separation leads to gentle nanoparticles size control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003)

    Article  Google Scholar 

  2. M.J. Martinez-Perez, R. de Miguel, C. Carbonera, M. Martinez-Julvez, A. Lostao, C. Piquer, C. Gomez-Moreno, J. Bartolome, F. Luis, Size-dependent properties of magnetoferritin. Nanotechnology 21, 465707 (2010)

    Article  ADS  Google Scholar 

  3. J.C. Alonso, R. Diamant, P. Castillo, M.C. Acosta-Garcia, N. Batina, E. Haro-Poniatowski, Thin films of silver nanoparticles deposited in vacuum by pulsed laser ablation using a YAG:Nd laser. Appl. Surf. Sci. 255, 4933 (2009)

    Article  ADS  Google Scholar 

  4. H. Jans, Q. Huo, Gold nanoparticle-enabled biological and chemical detection and analysis. Chem. Soc. Rev. 41, 2849 (2012)

    Article  Google Scholar 

  5. B. Liu, Z. Hu, Y. Che, Y. Chen, X. Pan, Nanoparticle generation in ultrafast pulsed laser ablation of nickel. Appl. Phys. Lett. 90, 044103 (2007)

    Article  ADS  Google Scholar 

  6. T. Nakamura, H. Magara, Y. Herbani, S. Sato, Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution. Appl. Phys. A 104, 1021 (2011)

    Article  ADS  Google Scholar 

  7. P.M. Ossi, F. Neri, N. Santo, S. Trusso, Noble metal nanoparticles produced by nanosecond laser ablation. Appl. Phys. A 104, 829 (2011)

    Article  ADS  Google Scholar 

  8. S. Amoruso, G. Ausanio, R. Bruzzese, M. Vitiello, X. Wang, Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum. Phys. Rev. B 71, 033406 (2005)

    Article  ADS  Google Scholar 

  9. A.V. Kabashin, M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003)

    Article  ADS  Google Scholar 

  10. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, An analysis of the dependence on photon energy of the process of nanoparticle generation by femtosecond laser ablation in a vacuum. Nanotechnology 18, 145612 (2007)

    Article  ADS  Google Scholar 

  11. E. Akman, B.G. Oztoprak, M. Gunes, E. Kacar, A. Demir, Effect of femtosecond Ti:sapphire laser wavelengths on plasmonic behaviour and size evolution of silver nanoparticles. Photonics Nanostruct. 9, 276 (2011)

    Article  ADS  Google Scholar 

  12. U. Chakravarty, P.A. Naik, C. Mukherjee, S.R. Kumbhare, P.D. Gupta, Formation of metal nanoparticles of various sizes in plasma plumes produced by Ti:sapphire laser pulses. J. Appl. Phys. 108, 053107 (2010)

    Article  ADS  Google Scholar 

  13. D. Riabinina, M. Chaker, J. Margot, Dependence of gold nanoparticle production on pulse duration by laser ablation in liquid media. Nanotechnology 23, 135603 (2012)

    Article  ADS  Google Scholar 

  14. X. Wang, S. Amoruso, J. Xia, Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation. Appl. Surf. Sci. 255, 5211 (2009)

    Article  ADS  Google Scholar 

  15. S. Noël, J. Hermann, Reducing nanoparticles in metal ablation plumes produced by two delayed short laser pulses. Appl. Phys. Lett. 94, 053120 (2009)

    Article  ADS  Google Scholar 

  16. E. Axente, M. Barberoglou, P.G. Kuzmin, E. Magoulakis, P.A. Loukakos, E. Stratakis, G.A. Shafeev, C. Fotakis, Size distribution of Au NPs generated by laser ablation of a gold target in liquid with time-delayed femtosecond pulses (2010). arXiv:1008.0374

  17. L. Jiang, H.L. Tsai, Repeatable nanostructures in dielectrics by femtosecond laser pulse trains. Appl. Phys. Lett. 87, 151104 (2005)

    Article  ADS  Google Scholar 

  18. Z. Hu, S. Singha, R.J. Gordon, Controlling the photoluminescence of gallium arsenide with trains of ultrashort laser pulses. Phys. Rev. B 82, 115204 (2010)

    Article  ADS  Google Scholar 

  19. M. Guillermin, C. Liebig, F. Garrelie, R. Stoian, A.S. Loir, E. Audouard, Adaptive control of femtosecond laser ablation plasma emission. Appl. Surf. Sci. 255, 5163 (2009)

    Article  ADS  Google Scholar 

  20. X. Wang, X. Xu, Nanoparticles formed in picosecond laser argon crystal interaction. J. Heat Transf. 125, 1147 (2002)

    Article  Google Scholar 

  21. S. Amoruso, R. Bruzzese, M. Vitiello, N.N. Nedialkov, P.A. Atanasov, Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum. J. Appl. Phys. 98, 044907 (2005)

    Article  ADS  Google Scholar 

  22. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  23. X. Li, L. Jiang, H.L. Tsai, Phase change mechanisms during femtosecond laser pulse train ablation of nickel thin films. J. Appl. Phys. 106, 064906 (2009)

    Article  ADS  Google Scholar 

  24. C. Cheng, X. Xu, Mechanisms of decomposition of metal during femtosecond laser ablation. Phys. Rev. B 72, 165415 (2005)

    Article  ADS  Google Scholar 

  25. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  26. J. Hohlfeld, S.S. Wellershoff, J. Gudde, U. Conrad, V. Jahnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237 (2000)

    Article  Google Scholar 

  27. L.A. Girifalco, V.G. Weizer, Application of the morse potential function to cubic metals. Phys. Rev. 114, 687 (1959)

    Article  ADS  Google Scholar 

  28. X. Wang, Thermal and thermomechanical phenomena in picosecond laser copper interaction. J. Heat Transf. 126, 355 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51105037 and 90923039) and Supported by Research Fund for the Doctoral Program of Higher Education (Grant No. 20111101120010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Jiang.

Appendix: Scaling factor

Appendix: Scaling factor

Initially, the electron and lattice temperatures are both 300 K. The electron temperature of the next time step can be obtained by Eq. (1), which considers electron heating by ultrashort laser. The energy exchange between the electrons and lattices within the time step and finite difference layer is estimated by

$$ \varDelta E_{\mathrm{exchange}} = \varDelta t G (T_{e}- T_{l}) V $$
(6)

where Δt is the time step, and V is the volume of a sample layer. The energy exchange leads to increase of the kinetic energy of the layer. The kinetic energy of the layer is

(7)

where v xi,t ,v yi,t , and v zi,t are the velocities of atom i in the directions x,y, and z, respectively, and \(\overline{v_{x,t}},\overline{v_{y,t}}\), and \(\overline{v_{z,t}}\) are the average velocities of atom i in the directions x,y, and z, respectively.

The lattice temperature T l is related to the kinetic energy of the layer by

(8)

where N is the number of atoms within the layer, and k B is the Boltzmann constant. Hence,

$$ \frac{T_{{l} , t + \varDelta t} - T_{ l , t}}{T_{l, t}}= \frac{E_{k, t + \varDelta t} - E_{k, t}}{E_{k, t}}=\frac{\varDelta E_{\mathrm{exchange}}}{E_{k, t}} $$
(9)

where t is the time. Therefore,

(10)

According to Eq. (8) (the relation between the lattice temperature T l and velocities of atoms) and Eq. (10), the energy exchange ΔtG(T e T l )V is transferred to lattices by scaling the atom velocities with a factor β (Eq. (11)), which is equivalent to lattice energy increase by Eq. (2).

(11)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Jiang, L. Size distribution control of metal nanoparticles using femtosecond laser pulse train: a molecular dynamics simulation. Appl. Phys. A 109, 367–376 (2012). https://doi.org/10.1007/s00339-012-7269-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7269-8

Keywords

Navigation