Skip to main content
Log in

Exact compositional analysis of SiGe alloys by matrix effect compensated MCs+-SIMS

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SiGe alloy, owing to its high electron and hole mobility, has potential applications in high-speed microelectronic device technology. The optimization of such technology requires the precise determination of Ge concentration in the full range of composition and the understanding and control of the Ge–Si interdiffusion phenomenon. The most appropriate analytical technique with highest detection sensitivity (∼subparts per billion) for measuring elemental concentration is secondary ion mass spectrometry (SIMS). However, strong compositional dependence of secondary ion yield, i.e. “matrix effect,” has always made SIMS quantification extremely difficult. A procedure for the accurate quantification of Ge concentration in molecular beam epitaxy (MBE)-grown Si1−x Ge x (0<x<0.72) alloys based on MCs+-SIMS approach has been proposed. The “matrix effect” is shown to be completely suppressed for all Ge concentrations irrespective of impact Cs+ ion energies. The novel methodology has successfully been applied for direct quantitative composition analysis of Si/Ge multilayer structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.O. Rezaev, S. Kiravittaya, V.M. Fomin, A. Rastelli, O.G. Schmidt, Phys. Rev. B 82, 153306 (2010)

    Article  ADS  Google Scholar 

  2. G. Mazzeo, E. Yablonovitch, H.W. Jiang, Y. Bai, E.A. Fitzgerald, Appl. Phys. Lett. 96, 213501 (2010)

    Article  ADS  Google Scholar 

  3. O.P. Pchelyakov, A.V. Dvurechensky, A.V. Latyshev, A.L. Aseev, Semicond. Sci. Technol. 26, 014027 (2011)

    Article  ADS  Google Scholar 

  4. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, C.M. Lieber, Nat. Lett. 441, 489 (2006)

    Article  ADS  Google Scholar 

  5. D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64, 1990 (1943)

    Google Scholar 

  6. S.C. Jain, S. Decoutere, M. Willander, H.E. Maes, Semicond. Sci. Technol. 16, R67 (2001)

    Article  ADS  Google Scholar 

  7. A. Sadek, K. Ismail, M.A. Armstrong, D.A. Antoniadis, F. Stern, IEEE Trans. Electron Devices 43, 1224 (1996)

    Article  ADS  Google Scholar 

  8. V.A. Shah, A. Dobbie, M. Myronov, D.R. Leadley, Thin Solid Films 520, 3227 (2012)

    Article  ADS  Google Scholar 

  9. S.E. Thompsom, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, Y. El-Mansy, IEEE Electron Device Lett. 25, 191 (2004)

    Article  ADS  Google Scholar 

  10. P. Ranade, H. Takeuchi, V. Subramanian, T.J. King, IEEE Electron Device Lett. 23, 218 (2002)

    Article  ADS  Google Scholar 

  11. P. Ranade, H. Takeuchi, W.C. Lee, V. Subramanian, T.J. King, IEEE Trans. Electron Devices 49, 1436 (2002)

    Article  ADS  Google Scholar 

  12. L. Vescan, T. Stoica, E. Sutter, Appl. Phys. A 87, 485 (2007)

    Article  ADS  Google Scholar 

  13. Y.K. Le, H. Oechsner, Appl. Phys. A 78, 681 (2004)

    Article  ADS  Google Scholar 

  14. R. Kube, H. Bracht, J.L. Hansen, A.N. Larsen, E.E. Haller, S. Paul, W. Lerch, J. Appl. Phys. 107, 073520 (2010)

    Article  ADS  Google Scholar 

  15. L. Marona, P. Perlin, R. Czernecki, M. Leszczyñski, M. Boækowski, R. Jakiela, T. Suski, S.P. Najda, Appl. Phys. Lett. 98, 241115 (2011)

    Article  ADS  Google Scholar 

  16. Y. Cui, S. Yin, D. Wang, G. Xing, S. Leng, R. Wang, J. Appl. Phys. 108, 104506 (2010)

    Article  ADS  Google Scholar 

  17. E. Napolitani, D.D. Salvador, R. Storti, A. Carnera, S. Mirabella, F. Priolo, Phys. Rev. Lett. 93, 055901 (2004)

    Article  ADS  Google Scholar 

  18. H. Bracht, E.E. Haller, R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998)

    Article  ADS  Google Scholar 

  19. D.P. Chu, M.G. Dowsett, Phys. Rev. B 56, 15167 (1997)

    Article  ADS  Google Scholar 

  20. H. Gnaser, Low-Energy Ion Irradiation of Solid Surfaces, Springer Tracts in Modern Physics, vol. 146 (Springer, Berlin, 1999)

    Google Scholar 

  21. B. Saha, P. Chakraborty, J. Phys. Conf. Ser. 185, 012039 (2009)

    Article  ADS  Google Scholar 

  22. H. Gnaser, Phys. Rev. B 63, 045415 (2001)

    Article  ADS  Google Scholar 

  23. H. Gnaser, Phys. Rev. B 54, 16456 (1996)

    Article  ADS  Google Scholar 

  24. H. Gnaser, Phys. Rev. B 54, 17141 (1996)

    Article  ADS  Google Scholar 

  25. M. Gauneau, R. Chaplain, A. Rupert, A.L. Corre, M. Salvi, H. L’Haridon, D. Lecrosnier, C. Dubon-Chevallier, J. Appl. Phys. 66, 2241 (1989)

    Article  ADS  Google Scholar 

  26. P. Chakraborty, Ion Beam Analysis of Surfaces and Interfaces of Condensed Matter Systems (Nova Science, New York, 2002)

    Google Scholar 

  27. B. Saha, P. Chakraborty, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 258, 218 (2007)

    Article  ADS  Google Scholar 

  28. S. Sarkar, P. Chakraborty, H. Gnaser, Phys. Rev. B 70, 195427 (2004)

    Article  ADS  Google Scholar 

  29. B. Saha, S. Sarkar, P. Chakraborty, H. Gnaser, Surf. Sci. 602, 1061 (2008)

    Article  ADS  Google Scholar 

  30. J.A. Jackman, L. Dignard-Bailey, R.S. Storey, C. Mac-Pherson, S. Rolfe, L. Van Der Zwan, T.E. Jackman, Nucl. Instrum. Methods Phys. Res. B 45, 592 (1990)

    Article  ADS  Google Scholar 

  31. P.C. Zalm, C.J. Vriezema, D.J. Gravesteijn, G.F.A. van de Walle, W.B. de Boer, Surf. Interface Anal. 17, 556 (1991)

    Article  Google Scholar 

  32. G. Prudon, J.C. Dupuy, M. Bonneau, L. Vandroux, C. Dubois, B. Gautier, J.P. Vallard, J. Delmas, P. Warren, D. Dutartre, Proceedings of the SIMS X. Wiley, Munster, (1995)

    Google Scholar 

  33. G. Dong, C. Liangzhen, L. Rong, A.T.S. Wee, Surf. Interface Anal. 32, 171 (2001)

    Article  Google Scholar 

  34. F. Sánchez-Almazán, E. Napolitani, A. Carnera, A.V. Drigo, G. Isella, H. von Känel, M. Berti, Appl. Surf. Sci. 231–232, 704 (2004)

    Article  Google Scholar 

  35. Z.X. Jiang, K. Kim, J. Lerma, A. Corbett, D. Sieloff, M. Kottke, R. Gregory, S. Schauer, Appl. Surf. Sci. 252, 7262 (2006)

    Article  ADS  Google Scholar 

  36. H.-U. Ehrke, H. Maul, Mater. Sci. Semicond. Process. 8, 111 (2005)

    Article  Google Scholar 

  37. G. Dong, Q. Chao, Z. Yizheng, C. Liangzhen, F. Desse, M. Schuhmacher, Proceedings of the SIMS XII. Elseviev, Amsterdam, (2000)

    Google Scholar 

  38. M.G. Dowsett, R.J.H. Morris, M. Hand, A.T. Grigg, D. Walker, R. Beanland, Surf. Interface Anal. 43, 211 (2011)

    Article  Google Scholar 

  39. R.J.H. Morris, M.G. Dowsett, J. Appl. Phys. 105, 114316 (2009)

    Article  ADS  Google Scholar 

  40. R.J.H. Morris, M.G. Dowsett, Surf. Interface Anal. 43, 543 (2011)

    Article  Google Scholar 

  41. Z. Zhu, P. Ronsheim, A. Turansky, M. Hatzistergos, A. Madan, T. Pinto, J. Holta, A. Reznicek, Surf. Interface Anal. 43, 657 (2011)

    Article  Google Scholar 

  42. M. Py, J.P. Barnes, J.M. Hartmann, Surf. Interface Anal. 43, 539 (2011)

    Article  Google Scholar 

  43. H. Gnaser, H. Oechsner, Surf. Sci. Lett. 302, L289 (1994)

    Article  ADS  Google Scholar 

  44. G. Prudon, B. Gautier, J.C. Dupuy, C. Dubois, M. Bonneau, J. Delmas, J.P. Vallard, G. Bremond, R. Brenier, Thin Solid Films 294, 54 (1997)

    Article  ADS  Google Scholar 

  45. D. Marseilhan, J.P. Barnes, F. Fillot, J.M. Hartmann, P. Holliger, Appl. Surf. Sci. 255, 1412 (2008)

    Article  ADS  Google Scholar 

  46. P. Holliger, F. Laugier, J.C. Dupuy, Surf. Interface Anal. 34, 472 (2002)

    Article  Google Scholar 

  47. M. Gavelle, E. Scheid, F. Cristiano, C. Armand, J.M. Hartmann, Y. Campidelli, A. Halimaoui, P.F. Fazzini, O. Marcelot, J. Appl. Phys. 102, 074904 (2007)

    Article  ADS  Google Scholar 

  48. J.W. Matthews, A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)

    ADS  Google Scholar 

  49. H. Gnaser, Surf. Sci. 342, 319 (1995)

    Article  ADS  Google Scholar 

  50. M. Sharma, M.K. Sanyal, M. Mukhopadhyay, M. Bera, B. Saha, P. Chakraborty, J. Appl. Phys. 110, 102204 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

B.S, M.S, and M.K.S want to thank Department of Science and Technology, India, for providing the financial support for carrying out experiments at Indian Beamline, Photon Factory, Japan. B.S. wishes to thank Professor T.K. Chini for the availability of the SEM facility for carrying out the EDS measurement. The author gratefully acknowledges Professor Debabrata Ghose and Mr. Safiul Alam Mollick for their time and support in carrying out AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purushottam Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, B., Chakraborty, P., Gnaser, H. et al. Exact compositional analysis of SiGe alloys by matrix effect compensated MCs+-SIMS. Appl. Phys. A 108, 671–677 (2012). https://doi.org/10.1007/s00339-012-6949-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6949-8

Keywords

Navigation