Skip to main content
Log in

Density functional theory of transition metal phthalocyanines, II: electronic structure of MnPc and FePc—symmetry and symmetry breaking

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a two-part systematic density functional theory (DFT) study of the electronic structure of selected transition metal phthalocyanines. We use a semi-local generalized gradient approximation (GGA) functional, as well as several hybrid exchange-correlation functionals, and compare the results to experimental photoemission data. Here, we study the intermediate spin systems MnPc and FePc. We show that DFT calculations of these systems are extremely sensitive to the choice of functional and basis set with respect to the obtained electronic configuration and to symmetry breaking. Interestingly, all simulated spectra are in good agreement with experiment despite the differences in the underlying electronic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) [Erratum: Phys. Rev. Lett. 78, 1396 (1997)]

    ADS  Google Scholar 

  2. P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98, 11623 (1994)

    Google Scholar 

  3. J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996)

    ADS  Google Scholar 

  4. C. Adamo, V. Barone, J. Chem. Phys. 110, 6158 (1999)

    ADS  Google Scholar 

  5. M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999)

    ADS  Google Scholar 

  6. Y. Zhao, D.G. Truhlar, Acc. Chem. Res. 41, 157 (2008)

    Google Scholar 

  7. N. Marom, L. Kronik, Appl. Phys. A (2008). doi:10.1007/s00339-008-5007-z

  8. S. Kümmel, L. Kronik, Rev. Mod. Phys. 80, 3 (2008)

    ADS  Google Scholar 

  9. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  10. N. Dori, M. Menon, L. Kilian, M. Sokolowski, L. Kronik, E. Umbach, Phys. Rev. B 73, 195208 (2006)

    ADS  Google Scholar 

  11. N. Marom, O. Hod, G.E. Scuseria, L. Kronik, J. Chem. Phys. 128, 164107 (2008)

    ADS  Google Scholar 

  12. H. Miyoshi, H. Ohya-Nishiguchi, Y. Deguchi, Bull. Chem. Soc. Jpn. 46, 2724 (1973)

    Google Scholar 

  13. H. Miyoshi, Bull. Chem. Soc. Jpn. 47, 561 (1974)

    Google Scholar 

  14. J.F. Kirner, W. Dow, R. Scheidt, Inorg. Chem. 15, 1685 (1976)

    Google Scholar 

  15. A. Hudson, H.J. Whitfield, Inorg. Chem. 6, 1120 (1967)

    Google Scholar 

  16. T.H. Moss, A.B. Robinson, Inorg. Chem. 7, 1692 (1968)

    Google Scholar 

  17. C.G. Barraclough, R.L. Martin, S. Mitra, R.C. Sherwood, J. Chem. Phys. 53, 1643 (1970)

    ADS  Google Scholar 

  18. B.W. Dale, R.J.P. Williams, C.E. Johnson, T.L. Thorp, J. Chem. Phys. 49, 3441 (1968)

    ADS  Google Scholar 

  19. B.W. Dale, R.J.P. Williams, P.R. Edwards, C.E. Johnson, J. Chem. Phys. 49, 3445 (1968)

    ADS  Google Scholar 

  20. B.W. Dale, Mol. Phys. 28, 503 (1974)

    ADS  Google Scholar 

  21. K. Awaga, Y. Maruyama, Phys. Rev. B 44, 2589 (1991)

    ADS  Google Scholar 

  22. M. Evangelisti, J. Bartolome, L.J. de Jongh, G. Filoti, Phys. Rev. B 66, 144410 (2002)

    ADS  Google Scholar 

  23. G. Filoti, M.D. Kuz’min, J. Bartolome, Phys. Rev. B 74, 134420 (2006)

    ADS  Google Scholar 

  24. S. Heutz, C. Mitra, W. Wu, A.J. Fisher, A. Kerridge, M. Stoneham, T.H. Harker, J. Gardener, H.-H. Tseng, T.S. Jones, C. Renner, G. Aeppli, Adv. Mater. 19, 3618 (2007)

    Google Scholar 

  25. A. Calzolari, A. Ferretti, M. Buongiorno Nardelli, Nanotechnologies 18, 424013 (2007)

    ADS  Google Scholar 

  26. M.S. Liao, J.D. Watts, M.J. Huang, Inorg. Chem. 44, 1941 (2005)

    Google Scholar 

  27. B. Bialek, I.G. Kim, J.I. Lee, Surf. Sci. 526, 367 (2003)

    ADS  Google Scholar 

  28. M.S. Liao, T. Kar, S.M. Gorun, S. Scheiner, Inorg. Chem. 43, 7151 (2004)

    Google Scholar 

  29. M.S. Liao, J.D. Watts, M.J. Huang, J. Phys. Chem. A 109, 7988 (2005)

    Google Scholar 

  30. W. Wu, A. Kerridge, A.H. Harker, A.J. Fisher, Phys. Rev. B 77, 184403 (2008)

    ADS  Google Scholar 

  31. Z. Liu, X. Zhang, Y. Zhang, J. Jiang, Spectrochim. Acta A 67, 1232 (2007). Note that, as pointed out in Ref. [32], FePc has been treated in this article as an s=0 system rather than an s=1 system

    ADS  Google Scholar 

  32. M. Sumimoto, Y. Kawashima, K. Hori, H. Fujimoto, Spectrochim. Acta A 71, 286 (2008)

    ADS  Google Scholar 

  33. J. Åhlund, K. Nilson, J. Schiessling, L. Kjeldgaard, S. Berner, N. Mårtensson, C. Puglia, B. Brena, M. Nyberg, Y. Luo, J. Chem. Phys. 125, 034709 (2006)

    ADS  Google Scholar 

  34. E.R. Davidson, W.T. Borden, J. Phys. Chem. 87, 4783 (1983)

    Google Scholar 

  35. C.D. Sherrill, M.S. Lee, M. Head-Gordon, Chem. Phys. Lett. 302, 425 (1999)

    ADS  Google Scholar 

  36. R.D. Cohen, C.D. Sherrill, J. Chem. Phys. 114, 8257 (2001)

    ADS  Google Scholar 

  37. B.D. Dunietz, M. Head-Gordon, J. Phys. Chem. A 107, 9160 (2003)

    Google Scholar 

  38. N.J. Russ, T.D. Crawford, G.S. Tschumper, J. Chem. Phys. 120, 7298 (2004)

    ADS  Google Scholar 

  39. I. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  40. P.O. Löwdin, in Rev. Mod. Phys., vol. 35, ed. by P. Lykos, G.W. Pratt (1963), p. 496

  41. A.D. McLean, B.H. Lengsfield, J. Pacansky, Y. Ellinger, J. Chem. Phys. 83, 3567 (1985)

    ADS  Google Scholar 

  42. A. Görling, Phys. Rev. A 47, 2783 (1993)

    ADS  Google Scholar 

  43. J.P. Perdew, A. Savin, K. Burke, Phys. Rev. A 51, 4531 (1995)

    ADS  Google Scholar 

  44. M.J. Frisch et al., Gaussian, Inc., Wallingford, CT (2003), using either Revision C. 01wis2 (2004) or Revision E. 01+MNG (2007)

  45. N.B. Balabanov, K.A. Peterson, J. Chem. Phys. 123, 064107 (2005)

    ADS  Google Scholar 

  46. T.H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989)

    ADS  Google Scholar 

  47. F. Jensen, J. Chem. Phys. 115, 9113 (2001)

    ADS  Google Scholar 

  48. F. Jensen, J. Chem. Phys. 116, 7372 (2002)

    ADS  Google Scholar 

  49. M.A. Iron, A.C.B. Lucassen, H. Cohen, M.E. van der Boom, J.M.L. Martin, J. Am. Chem. Soc. 126, 11699 (2004)

    Google Scholar 

  50. B.E. Williamson, T.C. VanCott, M.E. Boyle, G.C. Misener, M.J. Stillman, P.N. Schatz, J. Am. Chem. Soc. 114, 2412 (1992)

    Google Scholar 

  51. S. Nagamatsu, S. Kera, K.K. Okudaira, T. Fujikawa, N. Ueno, in The 4th Conference on Electronic Structure and Processes at Molecular-Based Interfaces, Princeton University, Princeton, NJ, USA, June 2008

  52. P. Coppens, L. Li, N.J. Zhu, J. Am. Chem. Soc. 105, 6173 (1983)

    Google Scholar 

  53. J. Janczak, R. Kubiak, Inorg. Chim. Act. 342, 64 (2003)

    Google Scholar 

  54. N. Papageorgiou, E. Salomon, T. Angot, J.M. Layet, L. Giovanelli, G. Le Lay, Prog. Surf. Sci. 77, 139 (1004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leeor Kronik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marom, N., Kronik, L. Density functional theory of transition metal phthalocyanines, II: electronic structure of MnPc and FePc—symmetry and symmetry breaking. Appl. Phys. A 95, 165–172 (2009). https://doi.org/10.1007/s00339-008-5005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-5005-1

PACS

Navigation