Skip to main content
Log in

Quantum dot photonic devices for lightwave communication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For InAs-GaAs based quantum dot lasers emitting at 1300 nm digital modulation showing an open eye pattern up to 12 Gb/s at room temperature is demonstrated, at 10 Gb/s the bit error rate is below 10-12 at -2 dBm receiver power. Cut-off frequencies up to 20 GHz are realised for lasers emitting at 1.1 μm. Passively mode-locked QD lasers generate optical pulses with repetition frequencies between 5 and 50 GHz, with a minimum Fourier limited pulse length of 3 ps. The uncorrelated jitter is below 1 ps. We use here deeply etched narrow ridge waveguide structures which show excellent performance similar to shallow mesa structures, but a circular far field at a ridge width of 1 μm, improving coupling efficiency into fibers. No beam filamentation of the fundamental mode, low α-factors and strongly reduced sensitivity to optical feedback is observed. QD lasers are thus superior to QW lasers for any system or network.

Quantum dot semiconductor optical amplifiers (QD SOAs) demonstrate gain recovery times of 120–140 fs, 4–7 times faster than bulk/QW SOAs, and a net gain larger than 0.4 dB/(mm*QD layer) providing us with novel types of booster amplifiers and Mach–Zehnder interferometers.

These breakthroughs became possible due to systematic development of self-organized growth technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, N.N. Ledentsov: Quantum Dot Heterostructures (Wiley, Chichester 1998)

  2. M. Grundmann (ed.): Nano-Optoelectronics (Springer, Heidelberg 2002)

  3. R. Dingle, C.H. Henry: Quantum Effects in Heterostructure Lasers, U.S. Patent 3 982 207, 1976

  4. P. Borri, W. Langbein, J. Mørk, J.M. Hvam, F. Heinrichsdorff, M.-H. Mao , D. Bimberg: Phys. Rev. B 60, 7784 (1999); P. Borri, W. Langbein, S. Schneider, D. Waggon, R.L. Sellin, D. Ouyang, D. Bimberg: Phys. Rev. Lett. 87, 157401 (2001)

    Article  ADS  Google Scholar 

  5. Y. Arakawa, H. Sakaki: Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  6. M. Asada, M. Miyamoto, Y. Suematsu: IEEE J. Quantum Electron. QE-22 , 1915 (1986)

  7. H. Benisty, C.M. Sotomayor-Torres, C. Weisbuch: Phys. Rev. B 44, 10945 (1991)

    Article  ADS  Google Scholar 

  8. H. Hirayama, K. Matsunaga, M. Asada, Y. Suematsu: Electron. Lett. 30, 142 (1994)

    Article  Google Scholar 

  9. D. Bimberg et al.: Thin Solid Films 267, 32 (1995)

    Article  ADS  Google Scholar 

  10. V.A. Shchukin, D. Bimberg: Rev. Mod. Phys. 71, 1125 (1999); V.A. Shchukin, N.N. Ledentsov, D. Bimberg: Epitaxy of Nanostructures (Springer, Heidelberg 2003)

    Article  ADS  Google Scholar 

  11. N. Kirstaedter et al.: Electron. Lett. 30, 1416 (1994)

    Article  Google Scholar 

  12. M. Grundmann, D. Bimberg: Jpn. J. Appl. Physics 36, 4181 (1997)

    Article  ADS  Google Scholar 

  13. O. Stier, M. Grundmann, D. Bimberg: Phys. Rev. B 59, 5688 (1999)

    Article  ADS  Google Scholar 

  14. D. Bimberg et al.: IEEE J. Sel. Top. Quantum Electronics 3, 196 (1997)

    Article  Google Scholar 

  15. N.N. Ledentsov et al.: El. Lett. 39, 1126 (2003); A.R. Kovsh et al.: El. Lett. 38, 1104 (2002)

    Article  Google Scholar 

  16. R. Sellin et al.: Appl. Phys. Lett. 78, 1207 (2001)

    Article  ADS  Google Scholar 

  17. R.L. Sellin et al.: Electron Lett. 38, 883 (2002)

    Article  Google Scholar 

  18. C. Ribbat et al.: Appl. Phys. Lett. 82, 952 (2003); E. Gehrig et al.: Appl. Phys. Lett. 84, 1650 (2004)

    Article  ADS  Google Scholar 

  19. M. Kuntz et al.: New Journal of Physics 6, 181 (2004)

    Article  ADS  Google Scholar 

  20. D. O’Brien et al.: Electron. Lett. 39, 1819 (2003); G. Huyet et al.: Phys. Stat. Sol. (b) 201, 345 (2004)

    Article  Google Scholar 

  21. C. Ribbat et al.: Electron. Lett. 37, 174 (2001)

    Article  Google Scholar 

  22. D. Bimberg, et al.: Phys. Stat. Sol. (b) 224, 787 (2001)

    Article  ADS  Google Scholar 

  23. M. Kuntz et al.: Electron. Lett., submitted

  24. M.G. Thompson et al.: Proc. SPIE 5365, 107 (2004)

    Article  ADS  Google Scholar 

  25. J.A. Lott, et al.: Electron. Lett. 36, 1384 (2000); D. Bimberg, N.N. Ledentsov, J.A. Lott, MRS Bulletin July 2002, p. 531

    Article  Google Scholar 

  26. P. Borri et al.: IEEE J. Sel. Top. Quantum Electron. 6, 544 (2000)

    Article  Google Scholar 

  27. R. Mirin: Adv. Semicon. Lasers and Applications 153, 21–23 July, 1999

  28. M. Sugawara et al.: Jpn. J. Appl. Phys. 40, L488 (2001)

  29. M. Laemmlin et al.: OSA CLEO/IQEC Technical Digest, CThB6 (2004)

  30. S. Schneider et al.: IEEE J. Quantum Electron. 40, 1423 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bimberg.

Additional information

PACS

81.07.Ta; 81.16.Dn; 42.55.Px; 42.60.-v

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bimberg, D., Kuntz, M. & Laemmlin, M. Quantum dot photonic devices for lightwave communication. Appl. Phys. A 80, 1179–1182 (2005). https://doi.org/10.1007/s00339-004-3184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3184-y

Keywords

Navigation