Skip to main content
Log in

Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We present the mechanical model of a bio-inspired deformable system, modeled as a Timoshenko beam, which is coupled to a substrate by a system of distributed elements. The locomotion action is inspired by the coordinated motion of coupling elements that mimic the legs of millipedes and centipedes, whose leg-to-ground contact can be described as a peristaltic displacement wave. The multi-legged structure is crucial in providing redundancy and robustness in the interaction with unstructured environments and terrains. A Lagrangian approach is used to derive the governing equations of the system that couple locomotion and shape morphing. Features and limitations of the model are illustrated with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelnour, K., Stinchcombe, A., Porfiri, M., Zhang, J., Childress, S.: Bio-inspired hovering and locomotion via wirelessly powered ionic polymer metal composites. In: Proceedings SPIE 7975, Bioinspiration Biomim. Bioreplication, pp. 79750R–79750R-9 (2011). doi:10.1117/12.881737

  • Avirovik, D., Butenhoff, B., Priya, S.: Millipede-inspired locomotion through novel U-shaped piezoelectric motors. Smart Mater. Str. 23(3) (2014). doi:10.1088/0964-1726/23/3/037001

  • Ayali, A., Gelman, S., Tytell, E.D., Cohen, A.H.: Lateral-line activity during undulatory body motions suggests a feedback link in closed-loop control of sea lamprey swimming. Can. J. Zool. Rev. Can. De Zool. 87(8), 671–683 (2009). doi:10.1139/Z09-050

  • Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers I. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Brenner, S., Scott, R.: The mathematical Theory of Finite Element Methods. Text in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  • Cahn, R.W.: Biomimetics: biologically inspired technologies. Nature 444(7118), 425–426 (2006). doi:10.1038/444425b

    Article  Google Scholar 

  • Capinera, J.L.: Insects and Wildlife: Arthropods and their Relationships with Wild Vertebrate Animals. Wiley-Blackwell, Hoboken (2010)

    Book  Google Scholar 

  • Cha, Y., Verotti, M., Walcott, H., Peterson, S.D., Porfiri, M.: Energy harvesting from the tail beating of a carangiform swimmer using ionic polymer–metal composites. Bioinspiration Biomim. 8(3) (2013) doi: 10.1088/1748-3182/8/3/036003

  • Chadwick, P.: Continuum Mechanics: Concise Theory and Problems, 1st edn. Dover Publications, Mineola (1998)

    Google Scholar 

  • Chen, L., Wang, Y., Ma, S., Li, B.: Analysis of traveling wave locomotion of snake robot. In: Proceedings 2003 IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, vol. 1, 2, pp. 365–369 (2003)

  • Chirikjian, G., Burdick, J.: Kinematics of hyper-redundant manipulators. In: Proceedings of ASME Conference of Mechanism, pp. 391–396 (1990)

  • Clement, W.I., Inigo, R.M.: Design of a snake-like manipulator. J. Robot. Autono. Sys. 6, 265–282 (1990)

    Article  Google Scholar 

  • Colgate, J.E., Lynch, K.M.: Mechanics and control of swimming: a review. IEEE J. Ocean. Eng. 29(3), 660–673 (2004). doi:10.1109/JOE.2004.833208

    Article  Google Scholar 

  • Daltorio, K.A., Boxerbaum, A.S., Horchler, A.D., Shaw, K.M., Chiel, H.J., Quinn, R.D.: Efficient worm-like locomotion: slip and control of soft-bodied peristaltic robots. Bioinspiration Biomim. (2013). doi:10.1088/1748-3182/8/3/035003

    Google Scholar 

  • Dandrea-Novel, B., Bastin, G., Campion, G.: Modelling and control of non-holonomic wheeled mobile robots. In: 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, Apr 09–11, 1991, vol. 1–3, pp. 1130–1135 (1991)

  • Dario, P., Ciarletta, P., Menciassi, A., Kim, B.: Modelling and experimental validation of the locomotion of endoscopic robots in the colon. In: Siciliano, B., Dario, P (eds.) Experimental Robotics VIII, Springer Tracts in Advanced Robotics Sant’Angelo, Italy, Jul 08–11, 2002, vol. 5, pp. 445–453 (2003). 8th International Symposium on Experimental Robotics (ISER 02)

  • Drago, L., Fusco, G., Garollo, E., Minelli, A.: Structural aspects of leg-to-gonopod metamorphosis in male helminthomorph millipedes (Diplopoda). Front. Zool. (2011). doi:10.1186/1742-9994-8-19

    Google Scholar 

  • Enghpff, H.: Adaptive radiation of the millipede genus cylindroiulus on madeira: habitat, body size, and morphology (Diplopoda, Julida: Julidae). Rev. Ecol. Soil. Biol. 20(3), 403–415 (1983)

    Google Scholar 

  • Esser, B., Huston, D.: Versatile robotic platform for structural health monitoring and surveillance. Smart Struct. Syst. 1(4), 325–338 (2005)

    Article  Google Scholar 

  • Fattahi, J., Spinello, D.: Path following and shape morphing with a continuous slender mechanism. ASME J. Dyn. Syst. Meas. Control. (2015). doi:10.1115/1.4030816

    Google Scholar 

  • Golubitsky, M., Stewart, I., Buono, P., Collins, J.: A modular network for legged locomotion. Phys. D 115(1–2), 56–72 (1998). doi:10.1016/S0167-2789(97)00222-4

    Article  MathSciNet  MATH  Google Scholar 

  • González-Mora, J., Rodríguez-Hernández, A., Rodríguez-Ramos, L., Díaz-Saco, L., Sosa, N.: Development of a new space perception system for blind people, based on the creation of a virtual acoustic space. In: Mira, J., Sánchez-Andrés, J. (eds.) Engineering Applications of Bio-Inspired Artificial Neural Networks Lecture Notes in Computer Science, vol. 1607, pp. 321–330. Springer, Heidelberg (1999). doi:10.1007/BFb0100499

    Chapter  Google Scholar 

  • Gray, J., Lissmann, H.: Studies in animal locomotion VII. Locomotory reflexes in the earthworm. J. Exp. Biol. 15(4), 506–517 (1938)

    Google Scholar 

  • Hirose, S., Ikuta, K., Tsukamoto, M., Sato, K.: Considerations in design of the actuator based in the shape memory effect. In: Proceedings of the 6th IGToMM Congress, pp. 1549–1556 (1987)

  • Hirose, S., Umetani, Y.: Kinematic control of an active cord mechanism with tactile sensors. In: Proceedings of the CISM-ZFToM Symposium on Theory and Practice of Robots and Manipulators, pp. 241–252 (1976)

  • Hirose, S., Umetani, Y.: The kinematics and control of a soft gripper for the handling of living and fragile objects. In: Proceedings of the IGToMM Congress, pp. 1549–1556 (1979)

  • Hopkins, J.K., Spranklin, B.W., Gupta, S.K.: A survey of snake-inspired robot designs. Bioinspiration Biomim. (2009). doi:10.1088/1748-3182/4/2/021001

    Google Scholar 

  • Huston, D., Miller, J., Esser, B.: Adaptive, robotic and mobile sensor systems for structural assessment. In: Liu, SC (ed.) Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, Proceedings of SPIE-The International Society for Optical Engineering, vol. 5391, pp. 189–196 (2004). doi:10.1117/12.546606

  • Jayne, B.: Kinematics of terrestrial snake locomotion. Copeia 4, 915–927 (1986)

    Article  Google Scholar 

  • Jia, Z.J., Song, Y.D., Cai, W.C.: Bio-inspired approach for smooth motion control of wheeled mobile robots. Cogn. Comput. 5(2), 252–263 (2013). doi:10.1007/s12559-012-9186-8

    Article  Google Scholar 

  • Kang, R., Branson, D.T., Zheng, T., Guglielmino, E., Caldwell, D.G.: Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures. Bioinspiration Biomim. (2013). doi:10.1088/1748-3182/8/3/036008

    Google Scholar 

  • Krishnaprasad, P., Tsakiris, D.: Oscillations, SE(2)-snakes and motion control: a study of the roller racer. Dyn. Syst. Int. J. 16(4), 347–397 (2001). doi:10.1080/14689360110090424

    Article  MathSciNet  MATH  Google Scholar 

  • Kuroda, S., Kunita, I., Tanaka, Y., Ishiguro, A., Kobayashi, R., Nakagaki, T.: Common mechanics of mode switching in locomotion of limbless and legged animals. J. R. Soc. Interface 11(95), 20140,205 (2014)

    Article  Google Scholar 

  • La Spina, G., Sfakiotakis, M., Tsakiris, D.P., Menciassi, A., Dario, P.: Polychaete-like undulatory robotic locomotion in unstructured substrates. IEEE Trans. Robot. 23(6), 1200–1212 (2007). doi:10.1109/TRO.2007.909791

    Article  Google Scholar 

  • Liu, K., Tian, Y., Jiang, L.: Bio-inspired superoleophobic and smart materials: design, fabrication, and application. Prog. Mater. Sci. 58(4), 503–564 (2013). doi:10.1016/j.pmatsci.2012.11.001

    Article  Google Scholar 

  • Mahjoubi, H., Byl, K.: Modeling synchronous muscle function in insect flight: a bio-inspired approach to force control in flapping-wing MAVs. J. Intell. Robot. Syst. 70(1–4, SI), 181–202 (2013). doi:10.1007/s10846-012-9746-x

    Article  Google Scholar 

  • Majkut, L.: Free and forced vibrations of Timoshenko beam described by single differential equation. J. Theor. Appl. Mech. 47(1), 193–210 (2009)

    Google Scholar 

  • Marras, S., Porfiri, M.: Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion. J. R. Soc. Interface 9(73), 1856–1868 (2012). doi:10.1098/rsif.2012.0084

    Article  Google Scholar 

  • Martins, J., Botto, M., da Costa, J.: A Newton-Euler model of a piezo-actuated nonlinear elastic manipulator link. In: Nunes, U., De Aalmeida, AT., Bejczy, AK., Kosuge, K., Macgado, JAT (eds.) Proceedings of the 11th International Conference on Advanced Robotics 2003, vol. 1–3, pp. 935–940. Coimbra, Portugal, Jun 30-Jul 03 (2003)

  • Menciassi, A., Dario, P.: Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philos. T. R. Soc. Math. Phys. Eng. Sci 361(1811), 2287–2298 (2003). doi:10.1098/rsta.2003.1255

    Article  MathSciNet  Google Scholar 

  • Menciassi, A., Dario, P.: Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philos. T. R. Soc. Math. Phys. Eng. Sci 361(1811), 2287–2298 (2003). doi:10.1098/rsta.2003.1255

    Article  MathSciNet  Google Scholar 

  • Milford, R.I., Asokanthan, S.F.: Configuration dependent eigenfrequencies for a two-link flexible manipulator: experimental verification. J. Sound Vib. 222, 191–207 (1999)

    Article  Google Scholar 

  • Ostrowski, J., Burdick, J.: The geometric mechanics of undulatory robotic locomotion. Int. J. Robot. Res. 17(7), 683–701 (1998). doi:10.1177/027836499801700701

    Article  Google Scholar 

  • Park, Y., Young, D., Chen, B., Wood, R.J., Nagpal, R., Goldfield, E.C.: Networked Bio-Inspired Modules For Sensorimotor Control of Wearable Cyber-Physical Devices. In: 2013 International Conference on Computing, Networking and Communications (ICNC) (2013). San Diego, CA, Jan 28–31, (2013)

  • Renardy, M., Rogers, R.C.: An Introduction to Partial Differential Equations. Text in Applied Mathematics, 2nd edn. Springer, New York (2004)

    MATH  Google Scholar 

  • van Rensburg, N.F.J., van der Merwe, A.J.: Natural frequencies and modes of a Timoshenko beam. Wave Motion 44(1), 58–69 (2006). doi:10.1016/j.wavemoti.2006.06.008

    Article  MathSciNet  MATH  Google Scholar 

  • Ribas, L., Mujal, J., Izquierdo, M., Ramon, E.: Motion control for a single-motor robot with an undulatory locomotion system. In: 2007 Mediterranean conference on control and automation, vol. 1–4, pp. 1616–1621 (2007)

  • Saavedra, F., Erick, I., Friswell, M.I., Xia, Y.: Variable stiffness biological and bio-inspired materials. J. Intell. Mater. Syst. Struct. 24(5), 529–540 (2013). doi:10.1177/1045389X12461722

    Article  Google Scholar 

  • Sen, D., Mruthyunjays, T.S.: Studies of a new snake-like manipulator. ASME Conf. Robot. Spat. Mech. Mech. Syst. 45, 423–438 (1992)

    Google Scholar 

  • Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  • Shiller, Z., Gwo, Y.: Dynamic motion planning of autonomous vehicles. IEEE Trans. Robot. Autom. 7(2), 241–249 (1991). doi:10.1109/70.75906

    Article  Google Scholar 

  • Sitti, M., Menciassi, A., Ijspeert, A.J., Low, K.H., Kim, S.: Survey and introduction to the focused section on bio-inspired mechatronics. IEEE/ASME Trans. Mech. 18(2), 409–418 (2013). doi:10.1109/TMECH.2012.2233492

    Article  Google Scholar 

  • Stevens, M.M., Mecklenburg, G.: Bio-inspired materials for biosensing and tissue engineering. Polym. Int. 61(5), 680–685 (2012). doi:10.1002/pi.4183

    Article  Google Scholar 

  • Sugawara-Narutaki, A.: Bio-inspired synthesis of polymer-inorganic nanocomposite materials in mild aqueous systems. Polym. J. 45(3), 269–276 (2013). doi:10.1038/pj.2012.171

    Article  Google Scholar 

  • Sun, B., Zhu, D., Ding, F., Yang, S.X.: A novel tracking control approach for unmanned underwater vehicles based on bio-inspired neurodynamics. J. Mar. Sci. Technol. 18(1), 63–74 (2013). doi:10.1007/s00773-012-0188-8

    Article  Google Scholar 

  • Tanaka, Y., Ito, K., Nakagaki, T., Kobayashi, R.: Mechanics of peristaltic locomotion and role of anchoring. J. R. Soc. Interface 9(67), 222–233 (2011). doi:10.1098/rsif.2011.0339

    Article  Google Scholar 

  • Tangorra, J.L., Davidson, S.N., Hunter, I.W., Madden, P.G.A., Lauder, G.V., Dong, H., Bozkurttas, M., Mittal, R.: The development of a biologically inspired propulsor for unmanned underwater vehicles. IEEE J. Ocean. Eng. 32(3), 533–550 (2007). doi:10.1109/JOE.2007.903362

    Article  Google Scholar 

  • Timoshenko, S.: Vibration Problems In Engineering. D. Van Nostrand Company Inc, New York (1974)

    MATH  Google Scholar 

  • Tokic, G., Yue, D.K.P.: Optimal shape and motion of undulatory swimming organisms. Proc. R. Soc. B Biol. Sci. 279(1740), 3065–3074 (2012). doi:10.1098/rspb.2012.0057

    Article  Google Scholar 

  • Tolu, S., Vanegas, M., Luque, N.R., Garrido, J.A., Ros, E.: Bio-inspired adaptive feedback error learning architecture for motor control. Biol. Cybern. 106(8–9), 507–522 (2012). doi:10.1007/s00422-012-0515-5

    Article  Google Scholar 

  • Transeth, A.A., Pettersen, K.Y., Liljeback, P.: A survey on snake robot modeling and locomotion. Robotica 27, 999–1015 (2009). doi:10.1017/S0263574709005414

    Article  Google Scholar 

  • Umetani, Y., Hirose, S.: Biomechanical study of serpentine locomotion. In: Proceedings of the 1st ROMANSY Symposium Udine vol.177, 171–184 (1974)

  • Verriest, E.I.: Efficient motion planning for a planar multiple link robot, based on differential friction. In: Proceedings of IEEE Decision Control Conference 3, 2364–2365 (1989)

  • Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 24(2), 341–347 (2008). doi:10.1109/TRO.2008.916997

    Article  Google Scholar 

  • Yang, S., Jin, X., Liu, K., Jiang, L.: Nanoparticles assembly-induced special wettability for bio-inspired materials. Particuology 11(4, SI), 361–370 (2013). doi:10.1016/j.partic.2013.02.001

    Article  Google Scholar 

  • Yapp, W.: Locomotion of Worms. Nature 177(4509), 614–615 (1956). doi:10.1038/177614a0

    Article  Google Scholar 

  • Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., Zhang, J.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE ASME Trans. Mech. 17(5), 847–856 (2012). doi:10.1109/TMECH.2011.2132732

    Article  Google Scholar 

  • Yu, J.Z., Tan, M., Wang, S., Chen, E.: Development of a biomimetic robotic fish and its control algorithm. IEEE Trans. Syst. Man Cybern. B Cybern. 34(4), 1798–1810 (2004). doi:10.1109/TSMCB.2004.831151

    Article  Google Scholar 

  • Zehetner, C., Irschik, H.: Displacement compensation of beam vibrations caused by rigid-body motions. Smart Mater. Struct. 14(4), 862 (2005)

    Article  Google Scholar 

  • Zhang, J., Qiao, G., Song, G., Wang, A.: Design and implementation of a remote control system for a bio-inspired jumping robot. Int. J. Adv. Robot. Syst. (2012). doi:10.5772/51931

    Google Scholar 

  • Zhou, C., Low, K.H.: Kinematic modeling framework for biomimetic undulatory fin motion based on coupled nonlinear oscillators. IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. (IROS 2010), pp. 934–939 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Spinello.

Additional information

Communicated by Maurizio Porfiri.

Appendices

Appendix 1: Nonzero Entries of Mass Matrix and Christoffel Symbols Matrix

Nonzero entries of the mass matrix \(\mathbf {M}\) in (37):

$$\begin{aligned} M_{11}&= M_{22} = 1 \end{aligned}$$
(68a)
$$\begin{aligned} M_{14}&= M_{25} = M_{41} = M_{52} = \epsilon \end{aligned}$$
(68b)
$$\begin{aligned} M_{44}&= M_{55} = \epsilon ^2 \end{aligned}$$
(68c)
$$\begin{aligned} M_{66}&= \alpha _2 \epsilon ^2 \end{aligned}$$
(68d)
$$\begin{aligned} M_{36}&= M_{63} = \alpha _2 \epsilon \end{aligned}$$
(68e)
$$\begin{aligned} M_{13}&= M_{31} =-(d_2 + w^\star ) \end{aligned}$$
(68f)
$$\begin{aligned} M_{34}&= M_{43} = -\epsilon (d_2 + w^\star ) \end{aligned}$$
(68g)
$$\begin{aligned} M_{23}&= M_{32} = d_1 + u^\star + X_1 - \delta \end{aligned}$$
(68h)
$$\begin{aligned} M_{35}&= M_{53} = \epsilon (d_1 + u^\star + X_1 - \delta ) \end{aligned}$$
(68i)
$$\begin{aligned} M_{33}&= \alpha _2(1+\psi ^\star )^2 + (d_1 + u^\star + X_1 - \delta )^2 + (d_2 + w^\star )^2 \end{aligned}$$
(68j)

Nonzero entries \(C_{ij}\) in (44)

$$\begin{aligned}&C_{13} = C_{31} = \partial _t d_2 + \frac{1+\epsilon }{2} \partial _\tau w^\star + \partial _t \theta (d_1 + u^\star +X_1 - \delta ) \end{aligned}$$
(69a)
$$\begin{aligned}&C_{43} = C_{34} = \frac{1+\epsilon }{2} \partial _t d_2 + \epsilon \partial _\tau w^\star + \partial _t \theta (d_1 + u^\star +X_1 - \delta ) \end{aligned}$$
(69b)
$$\begin{aligned}&C_{23} = C_{32} = -\partial _t d_1 -\frac{1+\epsilon }{2} \partial _\tau u^\star + \partial _t \theta (d_2 + w^\star ) \end{aligned}$$
(69c)
$$\begin{aligned}&C_{53} = C_{35}= - \frac{1+\epsilon }{2} \partial _t d_1 - \epsilon \partial _\tau u^\star + \partial _t \theta (d_2 + w^\star ) \nonumber \\&C_{33} = -(\partial _t d_1 + \partial _\tau u^\star )(d_1 + u^\star +X_1 - \delta ) \end{aligned}$$
(69d)
$$\begin{aligned}&\quad \qquad - (\partial _t d_2 + \partial _\tau w^\star )(d_2 + w^\star ) - \alpha _2 \psi ^\star \partial _\tau \psi ^\star \end{aligned}$$
(69e)
$$\begin{aligned}&C_{36} = C_{63} = \alpha _2 \psi ^\star \partial _t \theta \end{aligned}$$
(69f)

Appendix 2: Basis Functions in Galerkin Projection

The set of basis functions for the deformation fields of the beam is obtained by solving the following homogeneous system for the nondimensionalized Timoshenko beam with free ends boundary conditions and a distributed system of supporting springs with stiffness per unit length \(\kappa \)

$$\begin{aligned} \ddot{u} - \alpha _1 u''&= 0 \end{aligned}$$
(70a)
$$\begin{aligned} \ddot{w} - (w'- \psi )' + \alpha _3 w&= 0 \end{aligned}$$
(70b)
$$\begin{aligned} \alpha _2 \ddot{\psi } - \alpha _1 \alpha _2 \psi '' - (w' - \psi )&= 0 \end{aligned}$$
(70c)
$$\begin{aligned} u'(0,t) = u'(1,t)&=0, \end{aligned}$$
(70d)
$$\begin{aligned} w'(0,t) - \psi (0,t) = w'(1,t) - \psi (1,t)&=0 \end{aligned}$$
(70e)
$$\begin{aligned} \psi '(0,t) = \psi '(1,t)&=0 \end{aligned}$$
(70f)

where \(\alpha _1\), \(\alpha _2\), and \(\alpha _3\) are defined in (36), with \(\alpha _3\) being a nondimensional measure of the stiffness of the supporting elastic coupling elements (modeling the legs) with respect to the shear stiffness of the body. The solution is obtained by the usual separation of variables \(u(X_1,\tau ) = \bar{u}(X_1) \exp (\mathrm {I} \omega \tau )\), \(w(X_1,\tau ) = \bar{w}(X_1) \exp (\mathrm {I} \omega \tau )\), and \(\psi (X_1,\tau ) = \bar{\psi }(X_1) \exp (\mathrm {I} \omega \tau )\), where \(\omega >0\) is the angular frequency, and \(\mathrm {I}\) is the imaginary unit. Since (70a) is uncoupled, the solution for \(\bar{u}\) is easily obtained as

$$\begin{aligned} \bar{u}_i(X_1) = B \cos \left( i \pi X_1 \right) \end{aligned}$$
(71)

To obtain the natural frequencies and associated eigenfunctions for w and \(\psi \), we follow the approach in van Rensburg and van der Merwe (2006), which is based on the solution of a vector eigenvalues problem for the system of two coupled second-order differential equations for the transverse displacement and for the rotation of the cross section. In our case, the two equations are (70b) and (70c). This allows to enforce boundary conditions for free ends in a direct way. A different approach based on the derivation of one-fourth order governing equation obtained by combining (70b) and (70c) is presented in the original work of Timoshenko (1974). However, in this case the application of boundary conditions requires special attention (Majkut 2009). The vector eigenvalues problem has different general solutions depending on the choice of material parameters (van Rensburg and van der Merwe 2006). The general solution of the eigenvalues problem is sought by considering the vector evaluated function \(\exp (\lambda x) \left( \begin{array}{cc} \bar{W}&\bar{\varPsi } \end{array} \right) ^\mathsf {T} \), where \(\bar{W}\) and \(\bar{\varPsi }\) are constants. Such function is a solution for some positive constant \(\lambda \) if and only if

$$\begin{aligned} \left( \begin{array}{cc} \lambda ^2 + \beta _1 &{} -\lambda \\ \beta _3 \lambda &{} \lambda ^2 + \beta _2 \end{array} \right) \left( \begin{array}{c} \bar{W} \\ \bar{\varPsi } \end{array} \right) = \left( \begin{array}{c} 0 \\ 0 \end{array} \right) \end{aligned}$$
(72)

with nondimensional parameters \(\beta _i\) defined by

$$\begin{aligned} \beta _1 = \omega ^2 - \alpha _3, \quad \beta _2 = \frac{1}{\alpha _1} \left( \omega ^2 - \frac{1}{\alpha _2} \right) , \quad \beta _3 = \frac{1}{\alpha _1 \alpha _2} \end{aligned}$$
(73)

The roots \(\lambda ^2\) of the characteristic polynomial \(\lambda ^4 + (\beta _1 + \beta _2 + \beta _3) \lambda ^2 + \beta _1 \beta _2 = 0\) are

$$\begin{aligned} \lambda ^2_{1,2}&= -\frac{1}{2} \left( \beta _1 + \beta _2 + \beta _3 \right) \left( 1 \pm \sqrt{\varDelta } \right) \end{aligned}$$
(74)
$$\begin{aligned} \varDelta&= 1 - \frac{4 \beta _1 \beta _2}{\left( \beta _1 + \beta _2 + \beta _3 \right) ^2 } \end{aligned}$$
(75)

In order for \(\lambda ^2\) to be real, it must be \(\varDelta > 0\), which is satisfied for \(\beta _1 \beta _2 < \gamma ^{2}/4\), where \(\gamma = \beta _1 + \beta _2 + \beta _3\). The special case \(\lambda ^2 = 0\) occurs when \(\varDelta = 1\), that is \(\beta _1 \beta _2 = 0\) or

$$\begin{aligned} \beta _1&= 0 \Rightarrow \omega ^2 = \alpha _3, \end{aligned}$$
(76)
$$\begin{aligned} \beta _2&= 0 \Rightarrow \omega ^2 = \alpha _2 \text { or } \alpha _1 = 0 \end{aligned}$$
(77)

This corresponds to rigid body motions of the system (Majkut 2009). Here we consider the system made of a material with shear modulus ten times smaller than the Young’s modulus, and we consider the overall shear stiffness \(k G A \ell ^2\) to be one hundred times larger than the bending stiffness YI. Moreover, we set the supporting springs to be softer than the beam (with ratio 1 / 2). Therefore, parameters \(\alpha _i\) are assigned to the numerical values in Table 1.

Table 1 Nondimensional parameters of the Timoshenko beam
Table 2 First seven roots of the characteristic equation for the linear modes

Let \(\omega _\varDelta \) be the root of \(\varDelta = 0\) and \(\omega _\gamma \) be the root of \(\gamma = 0\); with the choice of parameters listed above, we have \(\omega _\varDelta = 0.707\) and \(\omega _\gamma = 0.674\). Moreover, \(\omega _\lambda = 0.707\) is the root of \(\beta _1 \beta _2 = 0\). The condition \(\varDelta >0\) implies \(\omega > \omega _\varDelta \); therefore, it must be \(\gamma > 0\) since this is the case for \(\gamma (\omega>\omega _\gamma )>0\), and in this case \(\omega _\gamma < \omega _\varDelta \). For \(\varDelta > 0\) and \(\gamma > 0\), we have \(\lambda _1 = \pm \mathrm {I} \nu _1\) with \(\nu _1^2 = \frac{\gamma }{2} \left( \sqrt{\varDelta } + 1 \right) \); \(\varDelta >0\) also implies \(\beta _1 \beta _2 < 0\), since this is the case for \(\beta _1 \beta _2\) evaluated at \(\omega > \omega _\lambda \), and \(\omega _\lambda = \omega _\varDelta \). Therefore, \(\sqrt{\varDelta }>1\) with \(\lambda _2 = \pm \nu _2\) and \(\nu _2^2 = \frac{\gamma }{2} \left( \sqrt{\varDelta } - 1 \right) \). Here \(\varDelta > 0\) dictates \(\omega >\omega _{\varDelta }\). The general solution is therefore given by

$$\begin{aligned} \varPhi (x)&= C_1 \left( \begin{array}{c} \sin \nu _1 X_1 \\ - \frac{\beta _1 - \nu _1^2}{\nu _1} \cos \nu _1 X_1 \end{array} \right) + C_2 \left( \begin{array}{c} \cos \nu _1 X_1 \\ \frac{\beta _1 - \nu _1^2}{\nu _1} \sin \nu _1 X_1 \end{array} \right) \nonumber \\&+ C_3 \left( \begin{array}{c} \sinh \nu _2 X_1 \\ \frac{\beta _1 + \nu _2^2}{\nu _2} \cosh \nu _2 X_1 \end{array} \right) + C_4 \left( \begin{array}{c} \cosh \nu _2 X_1\\ \frac{\beta _1 + \nu _2^2}{\nu _2} \sinh \nu _2 X_1 \end{array} \right) \end{aligned}$$
(78)

By imposing the free end boundary conditions at \(X_1=0\) and \(X_1=1\), we obtain the linear algebraic relations involving \(C_3\) and \(C_4\) and coefficient matrix. The nontrivial solutions of the system are obtained by investigating the condition for rank deficiency of the coefficients matrix, which translates into the following condition for the determinant

$$\begin{aligned} - \cos \nu _1 \cosh \nu _2 + \frac{\nu _1 (\nu _1^2 - \beta _1)}{\nu _2 ( \nu _2^2 + \beta _1)} \sin \nu _1 \sinh \nu _2 + 1 = 0 \end{aligned}$$
(79)

All parameters in the characteristic equation depend on \(\omega \) and on the material and geometric parameters of the system. Therefore, once the material and the geometry are defined the characteristic equation is a nonlinear function of \(\omega \) only. The first seven roots of the characteristic equation that determine the corresponding modes are given in Table 2. The mode shapes are normalized with respect to the maximum amplitude for \(x \in (0,1)\) (boundaries not included). The corresponding dimensional values of the frequencies are obtained from the ones in Table 2 as \(\omega /\bar{t} = \frac{\omega }{\ell } \sqrt{\frac{k G}{\varrho }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinello, D., Fattahi, J.S. Peristaltic Wave Locomotion and Shape Morphing with a Millipede Inspired System. J Nonlinear Sci 27, 1093–1119 (2017). https://doi.org/10.1007/s00332-017-9372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9372-7

Keywords

Mathematics Subject Classification

Navigation