Skip to main content
Log in

On the Dynamics of Space Debris: 1:1 and 2:1 Resonances

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We study the dynamics of the space debris in the 1:1 and 2:1 resonances, where geosynchronous and GPS satellites are located. By using Hamiltonian formalism, we consider a model including the geopotential contribution for which we compute the secular and resonant expansions of the Hamiltonian. Within such model we are able to detect the equilibria and to study the main features of the resonances in a very effective way. In particular, we analyze the regular and chaotic behavior of the 1:1 and 2:1 resonant regions by analytical methods and by computing the Fast Lyapunov Indicators, which provide a cartography of the resonances. This approach allows us to detect easily the location of the equilibria, the amplitudes of the libration islands and the main dynamical stability features of the resonances, thus providing an overview of the 1:1 and 2:1 resonant domains under the effect of Earth’s oblateness. The results are validated by a comparison with a model developed in Cartesian coordinates, including the geopotential, the gravitational attraction of Sun and Moon and the solar radiation pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. GEO stands for geostationary orbit, located at about 42,164 km from Earth’s center, while GPS is the acronym for Global Positioning System, a network of satellites at about 26,560 km from Earth’s center.

References

  • Beutler, G.: Methods of Celestial Mechanics. Springer, Berlin (2005)

    Book  Google Scholar 

  • Breiter, S., Wytrzyszczak, I., Melendo, B.: Long-term predictability of orbits around the geosynchronous altitude. Adv. Space Res. 35, 1313–1317 (2005)

    Article  Google Scholar 

  • Celletti, A.: Stability and Chaos in Celestial Mechanics, Springer-Verlag, Berlin; published in association with Praxis Publishing Ltd., Chichester. ISBN: 978-3-540-85145-5 (2010)

  • Celletti, A., Galeş, C.: Dynamics of minor resonances for space debris, Preprint (2014)

  • Chao, C.C.: Applied Orbit Perturbation and Maintenance. Aerospace Press Series. AIAA, Reston (2005)

    Google Scholar 

  • Chao, C.C., Gick, R.A.: Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO. Adv. Space Res. 34, 1221–1226 (2004)

    Article  Google Scholar 

  • Deleflie, F., Rossi, A., Portmann, C., Metris, G., Barlier, F.: Semi-analytical investigations of the long term evolution of the eccentricity of Galileo and GPS-like orbits. Adv. Space Res. 47, 811–821 (2011)

    Article  Google Scholar 

  • Earth Gravitational Model 2008. http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/. Accessed 1 Dec 2013

  • Ely, T.A., Howell, K.C.: Dynamics of artificial satellite orbits with tesseral resonances including the effects of luni-solar perturbations. Dyn. Stab. Syst. 12(4), 243–269 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Froeschlé, C., Lega, E.: On the structure of symplectic mappings. The fast Lyapunov indicator: a very sensitive tool. Celest. Mech. Dyn. Astr. 78, 167–195 (2000)

    Article  MATH  Google Scholar 

  • Froeschlé, C., Lega, E., Gonczi, R.: Fast Lyapunov indicators. Application to asteroidal motion. Celest. Mech. Dyn. Astr. 67, 41–62 (1997)

    Article  MATH  Google Scholar 

  • Galeş, C.: A cartographic study of the phase space of the restricted three body problem. Application to the Sun-Jupiter-Asteroid system. Comm. Nonlinear Sci. Num. Sim. 17, 4721–4730 (2012)

    Article  MATH  Google Scholar 

  • Guzzo, M., Lega, E., Froeschlé, C.: On the numerical detection of the effective stability of chaotic motions in quasi-integrable systems. Physica D 163, 1–25 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Guzzo, M., Lega, E.: The numerical detection of the Arnold web and its use for long-term diffusion studies in conservative and weakly dissipative systems. Chaos 23, 023124 (2013)

    Article  Google Scholar 

  • Hubaux, Ch., Lemaître, A.: The impact of Earth’s shadow on the long-term evolution of space debris. Celest. Mech. Dyn. Astr. 116, 79–95 (2013)

    Article  Google Scholar 

  • Kaula, W.M.: Theory of Satellite Geodesy. Blaisdell Publ. Co., New York (1966)

    Google Scholar 

  • Klinkrad, H.: Space Debris: Models and Risk Analysis. Springer-Praxis, Berlin (2006)

    Google Scholar 

  • Lemaître, A., Delsate, N., Valk, S.: A web of secondary resonances for large \(A/m\) geostationary debris. Celest. Mech. Dyn. Astr. 104, 383–402 (2009)

    Article  Google Scholar 

  • Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics. Springer, New York (1983)

    Google Scholar 

  • Montenbruck, O., Gill, E.: Satellite Orbits. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  • Rossi, A.: Resonant dynamics of Medium Earth Orbits: space debris issues. Celest. Mech. Dyn. Astr. 100, 267–286 (2008)

    Article  MATH  Google Scholar 

  • Rossi, A., Valsecchi, G.B.: Collision risk against space debris in Earth orbits. Celest. Mech. Dyn. Astron. 95, 345–356 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Rossi, A., Valsecchi, G.B., Farinella, P.: Collision risk for high inclination satellite constellations. Planet. Space Sc. 48, 319–330 (2000)

    Article  Google Scholar 

  • Sampaio, J.C., Neto, A.G.S., Fernandes, S.S., Vilhena de Moraes, R., Terra, M.O.: Artificial satellites orbits in 2:1 resonance: GPS constellation. Acta Astronaut. 81, 623–634 (2012)

    Article  Google Scholar 

  • Valk, S., Lemaître, A.: Analytical and semi-analytical investigations of geosynchronous space debris with high area-to-mass ratios. Adv. Space Res. 41, 1077–1090 (2008)

    Article  Google Scholar 

  • Valk, S., Lemaître, A., Anselmo, L.: Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects. Adv. Space Res. 42, 1429–1443 (2008)

    Article  Google Scholar 

  • Valk, S., Delsate, N., Lemaître, A., Carletti, T.: Global dynamics of high area-to-mass ratios geosynchronous space debris by means of the MEGNO indicator. Adv. Space Res. 43, 1509–1526 (2009a)

    Article  Google Scholar 

  • Valk, S., Lemaître, A., Deleflie, F.: Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res. 43, 1070–1082 (2009b)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Alessandro Rossi for very useful discussions and his constant encouragement; we also thank Christoph Lhotka for helpful suggestions. We thank the reviewers for several comments which helped to improve this work. A.C. was partially supported by PRIN-MIUR 2010JJ4KPA_009, GNFM-INdAM and by the European Grant MC-ITN Stardust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Celletti.

Additional information

Communicated by Richard Mark Roberts.

Appendix: On the Derivation of the Cartesian Equations of Motion

Appendix: On the Derivation of the Cartesian Equations of Motion

We denote by \(\theta \) the sidereal time and let \(\mathbf {r}\) be the radius vector of the debris with coordinates \((x,y,z)\) and \((X,Y,Z)\) in the quasi-inertial and in the synodic frames introduced in Sect. 2: \(\mathbf {r}=x \mathbf {e}_1+y\mathbf {e}_2+z\mathbf {e}_3 = X\mathbf {f}_1+Y\mathbf {f}_2+Z\mathbf {f}_3\). Denoting by \(R_3(\theta )\) the rotation matrix of angle \(\theta \) around the third axis, the relation between the coordinates is

$$\begin{aligned} \left( \begin{array}{c} x \\ y \\ z \\ \end{array}\right) = R_3(-\theta )\left( \begin{array}{c} X \\ Y \\ Z \\ \end{array}\right) \!. \end{aligned}$$
(6.1)

The equations of motion (2.1) are provided by the sum of the contributions of the Earth’s gravitational influence, including the oblateness effect, the solar attraction, the lunar attraction and the solar radiation pressure. Let us denote by \(\nabla _F\) and \(\nabla _I\) the gradients in the synodic and quasi-inertial frames:

$$\begin{aligned} \nabla _F\equiv {{\partial }\over {\partial X}}\mathbf {f}_1+{{\partial }\over {\partial Y}}\mathbf {f}_2+{{\partial }\over {\partial Z}}\mathbf {f}_3,\qquad \nabla _I\equiv {{\partial }\over {\partial x}}\mathbf {e}_1+{{\partial }\over {\partial y}}\mathbf {e}_2+{{\partial }\over {\partial z}}\mathbf {e}_3. \end{aligned}$$

The equations (2.1) can be written in the form

$$\begin{aligned} \ddot{\mathbf {r}}&= \ {\mathcal {G}}\ R_3(-\theta )\ \nabla _F \int _{V_\mathrm{E}}{{\rho (\mathbf {r}_\mathrm{p})}\over {|\mathbf {r}-\mathbf {r}_\mathrm{p}|}}\ \mathrm{d}V_\mathrm{E}+ {\mathcal {G}}m_\mathrm{S}\ \nabla _I\Bigl ({1\over {|\mathbf {r}-\mathbf {r}_\mathrm{S}|}}+{{\mathbf {r}\cdot \mathbf {r}_\mathrm{S}}\over {|\mathbf {r}_\mathrm{S}|^3}}\Bigr )\nonumber \\&+\,{\mathcal {G}}m_\mathrm{M}\ \nabla _I\Bigl ({1\over {|\mathbf {r}-\mathbf {r}_M|}}+{{\mathbf {r}\cdot \mathbf {r}_M}\over {|\mathbf {r}_\mathrm{M}|^3}}\Bigr )-C_\mathrm{r}P_\mathrm{r}a_\mathrm{S}^2\ {A\over m}\ \nabla _I\Bigl ({1\over {|\mathbf {r}-\mathbf {r}_\mathrm{S}|}}\Bigr ). \end{aligned}$$
(6.2)

In the synodic frame we can write \((X,Y,Z)=(r\cos \phi \cos \lambda ,r\cos \phi \sin \lambda ,r\sin \phi )\), where \((r,\lambda ,\phi )\) are spherical coordinates with the longitude \(0\le \lambda \le 2\pi \) and the latitude \(-{\pi \over 2}\le \phi \le {\pi \over 2}\). Following Beutler (2005) and Earth Gravitational Model (2008), \(C_{10}=C_{11}=S_{11}=0\) and the values of \(C_{21}\) are \(S_{21}\) are very small (see Table 1), so that in the Cartesian equations we neglect the contribution of these harmonics. With these remarks we find the following explicit expansion of the Earth’s gravity potential up \(n=m=3\):

$$\begin{aligned} V(r,\phi ,\lambda )&\simeq {\mathcal {G}}{{M_\mathrm{E}}\over r}\ \Big [1+\Big ({R_\mathrm{E}\over r}\Big )^2\Big [ {1\over 2}(3\sin ^2\phi -1)C_{20}\\&\qquad \qquad +\,3 \cos ^2\phi \ \Big (C_{22} \cos (2\lambda ) +S_{22} \sin (2\lambda )\Big )\Big ]\\&\qquad \qquad +\, \Big ({R_E\over r}\Big )^3\ \Big [ {1\over 2}\sin \phi (5\sin ^2\phi -3)C_{30}\\&\qquad \qquad +\,\frac{3}{2} \cos \phi (5 \sin ^2 \phi -1)(C_{31} \cos \lambda +S_{31} \sin \lambda )\\&\qquad \qquad +\, 15 \sin \phi (1-\sin ^2 \phi ) \Big (C_{32} \cos (2 \lambda ) +S_{32} \sin (2 \lambda ) \Big )\\&\qquad \qquad +\,15 \cos ^3 \phi \Big (C_{33} \cos (3 \lambda ) +S_{33} \sin (3 \lambda ) \Big )\Big ]\Big ]. \end{aligned}$$

If \(A<B<C\) denote the Earth’s principal moments of inertia, we can write \(C_{20}=(A+B-2C)/(2M_\mathrm{E} R_\mathrm{E}^2)\) and \(C_{22}=(B-A)/(4M_\mathrm{E} R_\mathrm{E}^2)\). The Earth’s gravity potential in the synodic frame becomes

$$\begin{aligned} V(X,Y,Z)&\simeq {\mathcal {G}}{{M_\mathrm{E}}\over r}+{\mathcal {G}}{{M_\mathrm{E}}\over r}\ \Big ({R_\mathrm{E}\over r} \Big )^2\ \Big [C_{20}\Big ({{3Z^2}\over {2r^2}}-{1\over 2} \Big )\\&+\,3C_{22} {{X^2-Y^2}\over r^2}+6S_{22}{{XY}\over r^2}\Big ] +{\mathcal {G}}{{M_\mathrm{E}}\over r}\ \Big ({R_\mathrm{E}\over r}\Big )^3\ \Big [C_{30} \frac{Z}{2r} \Big ({{5Z^2}\over {r^2}}-3\Big )\\&+\, \frac{3}{2} \Big ({{5Z^2}\over {r^2}}-1\Big ) \Big (C_{31} \frac{X}{r} +S_{31} \frac{Y}{r}\Big )\\&\qquad +\, 15 \frac{Z}{r} \Big (C_{32} \frac{X^2-Y^2}{r^2} +S_{32} \frac{2XY}{r^2}\Big )\\&+\,15 \Big (C_{33} \frac{X(X^2-3Y^2)}{r^3} +S_{33} \frac{Y(3X^2-Y^2)}{r^3}\Big )\Big ]. \end{aligned}$$

From this expression and (6.1), we compute the first term of the right hand side of (6.2). This easily leads to the Cartesian equations of motion in the quasi-inertial frame. In (2.2) we give the equations with harmonics up to degree and order two.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celletti, A., Galeş, C. On the Dynamics of Space Debris: 1:1 and 2:1 Resonances. J Nonlinear Sci 24, 1231–1262 (2014). https://doi.org/10.1007/s00332-014-9217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-014-9217-6

Keywords

Mathematics Subject Classification

Navigation