Skip to main content
Log in

Low genetic variation between South American and Antarctic populations of the bank-forming moss Chorisodontium aciphyllum (Dicranaceae)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Antarctic–South American bank-forming moss Chorisodontium aciphyllum is known for having the oldest sub-fossils of any extant plant in Antarctica as well as extreme survival abilities, making it a candidate species for possible long-term survival in Antarctica. Applying phylogeographic and population genetic methods using the plastid markers trnL-F and rps4 and the nuclear internal transcribed spacer, we investigated the genetic diversity within C. aciphyllum throughout its range. Low genetic variation was found in all loci, both between and within Antarctic and southern South American populations, suggesting a relatively recent (likely within the last million years) colonization of this moss to the Antarctic, as well as a likely severe bottleneck during Pleistocene glaciations in southern South America. We also performed a simple atmospheric transfer modeling approach to study potential colonization rates of small (microscopic/microbial) or spore-dispersed organisms (such as many mosses and lichens). These suggested that the northern Antarctic Peninsula shows potentially regular connectivity from southern South America, with air masses transferring, particularly southbound, between the two regions. We found elevated genetic variation of C. aciphyllum in Elephant Island, also the location of the oldest known moss banks (> 5500 years), suggesting this location to be a genetic hotspot for this species in the Antarctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photographs: James Fenton

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allegrucci G, Carchini G, Todisco V, Convey P, Sbordoni V (2006) A molecular phylogeny of Antarctic Chironomidae and its implications for biogeographical history. Polar Biol 29:320–326

    Article  Google Scholar 

  • Allegrucci G, Carchini G, Convey P, Sbordoni V (2012) Evolutionary geographic relationships among orthocladine chironomid midges from maritime Antarctic and sub-Antarctic islands. Biol J Linn Soc 106:258–274

    Article  Google Scholar 

  • Bartlett JK, Frahm J-P (1983) Notes on Campylopus and Chorisodontium from New Zealand. J Bryol 12:365–382

    Article  Google Scholar 

  • Biersma EM, Jackson JA, Hyvönen J, Koskinen S, Linse K, Griffiths H, Convey P (2017) Global biogeographic patterns in bipolar moss species. R Soc Open Sci 4:170147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Björck S, Malmer N, Hjort C, Sandgren P, Ingólfsson Ó, Wallén B, Smith RIL, Jónsson BL (1991) Stratigraphic and paleoclimatic studies of a 5500-year-old moss bank on Elephant Island, Antarctica. Arct Alp Res 23:361–374

    Article  Google Scholar 

  • Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques 27:1180–1186

    CAS  PubMed  Google Scholar 

  • Chong CW, Pearce DA, Convey P (2015) Emerging spatial patterns in Antarctic prokaryotes. Front Microbiol 6:1058. https://doi.org/10.3389/fmicb.2015.01058

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins NJ (1976a) The development of moss-peat banks in relation to changing climate and ice cover on Signy Island in the maritime Antarctic. Br Antarct Surv B 43:85–102

    Google Scholar 

  • Collins NJ (1976b) Growth and population dynamics of the moss Polytrichum alpestre in the Maritime Antarctic. Oikos 27:389–401

    Article  Google Scholar 

  • Convey P, Stevens MI (2007) Antarctic biodiversity. Science 317:1877–1878

    Article  CAS  PubMed  Google Scholar 

  • Convey P, Gibson JA, Hillenbrand CD, Hodgson DA, Pugh PJ, Smellie JL, Stevens MI (2008) Antarctic terrestrial life - challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  • Convey P, Bindschadler R, Di Prisco G, Fahrbach E, Gu J, Hodgson DA, Mayewski PA, Summerhayes CP, Turner J, ACCE Consortium (2009a) Antarctic climate change and the environment. Antarct Sci 21:541–563

    Article  Google Scholar 

  • Convey P, Stevens MI, Hodgson DA, Smellie JL, Hillenbrand C-D, Barnes DKA, Clarke A, Pugh PJA, Linse K, Cary SC (2009b) Exploring biological constraints on the glacial history of Antarctica. Quat Sci Rev 28:3035–3048

    Article  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wever A, Leliaert F, Verleyen E, Vanormelingen P, Van der Gucht K, Hodgson DA, Sabbe K, Vyverman W (2009) Hidden levels of phylodiversity in Antarctic green algae: further evidence for the existence of glacial refugia. Proc R Soc Lond B Biol Sci 276:3591–3599

    Article  Google Scholar 

  • Department of Conservation, New Zealand (2013) New listing of the threatened status of New Zealand bryophytes, consultation closed Aug 2013. http://www.doc.govt.nz/get-involved/have-your-say/all-consultations/2013/new-listing-of-the-threatened-status-of-nz-bryophytes/. Accessed 10 Sept 2017

  • Fenton JHC (1980) The rate of peat accumulation in Antarctic moss banks. J Ecol 68:211–228

    Article  Google Scholar 

  • Fenton JHC (1982a) The formation of vertical edges on Antarctic moss peat banks. Arct Alp Res 14:21–26

    Article  Google Scholar 

  • Fenton JHC (1982b) Vegetation re-exposed after burial by ice and its relationship to changing climate in the South Orkney Islands. Brit Antarct Surv B 51:247–255

    Google Scholar 

  • Fenton JHC, Smith RIL (1982) Distribution, composition and general characteristics of the moss banks of the maritime Antarctic. Br Antarct Surv B 51:215–236

    Google Scholar 

  • Frahm JP (1989) The genus Chorisodontium (Dicranaceae, Musci) in the Neotropics. Bryophyt Divers Evol 1:11–24

    Article  Google Scholar 

  • Fraser CI, Nikula R, Ruzzante DE, Waters JM (2012) Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 27:462–471

    Article  PubMed  Google Scholar 

  • Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. Proc Natl Acad Sci USA 111:5634–5639. https://doi.org/10.1073/pnas.1321437111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guglielmin M, Convey P, Malfasi F, Cannone N (2015) Glacial fluctuations since the ‘Medieval Warm Period’ at Rothera Point (western Antarctic Peninsula). Holocene 26:154–158

    Article  Google Scholar 

  • Hills SF, Stevens MI, Gemmill CEC (2010) Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum. Antarct Sci 22:721–726

    Article  Google Scholar 

  • Hodgson DA, Convey P (2005) A 7000-year record of oribatid mite communities on a maritime-Antarctic island: responses to climate change. Arct Alp Res 37:239–245

    Article  Google Scholar 

  • Hulton NRJ, Purves RS, McCulloch RD, Sugden DE, Bentley MJ (2002) The last glacial maximum and deglaciation in southern South America. Quat Sci Rev 21:233–241

    Article  Google Scholar 

  • Hyvönen J (1991) Chorisodontium (Dicranaceae, Musci) in southern South America. Ann Bot Fenn 28:247–258

    Google Scholar 

  • Iakovenko NS, Smykla J, Convey P, Kašparová E, Kozeretska IA, Trokhymets V, Dykyy I, Plewka M, Devetter M, Duriš Z, Janko K (2015) Antarctic bdelloid rotifers: diversity, endemism and evolution. Hydrobiologia 761:5–43

    Article  Google Scholar 

  • Kato K, Arikawa T, Imura S, Kanda H (2013) Molecular identification and phylogeny of an aquatic moss species in Antarctic lakes. Polar Biol 36:1557–1568

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  Google Scholar 

  • Leigh JW, Bryant D (2015) PopART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116

    Article  Google Scholar 

  • Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. Int J Plant Sci 164:917–932

    Article  Google Scholar 

  • Lewis LR, Behling E, Gousse H, Qian E, Elphick CS, Lamarre JF, Bêty J, Liebezeit J, Rozzi R, Goffinet B (2014) First evidence of bryophyte diaspores in the plumage of transequatorial migrant birds. PeerJ 2:e424

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143

    Article  Google Scholar 

  • McGaughran A, Stevens MI, Holland B (2010) Biogeography of circum-Antarctic springtails. Mol Phylogenet Evol 57:48–58

    Article  PubMed  Google Scholar 

  • Nadot S, Bajon R, Lejeune B (1994) The chloroplast generps 4 as a tool for the study of Poaceae phylogeny. Plant Syst Evol 191:27–38

    Article  Google Scholar 

  • Ochyra R, Smith RIL, Bednarek-Ochyra H (2008) The illustrated moss flora of Antarctica. Cambridge University Press, Cambridge

    Google Scholar 

  • Peat HJ, Clarke A, Convey P (2007) Diversity and biogeography of the Antarctic flora. J Biogeogr 34:132–146

    Article  Google Scholar 

  • Pisa S, Biersma EM, Convey P, Patiño J, Vanderpoorten A, Werner O, Ros RM (2014) The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival? Polar Biol 37:1469–1477

    Article  Google Scholar 

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer

  • Roads E, Longton RE, Convey P (2014) Millennial timescale regeneration in a moss from Antarctica. Curr Biol 24:R222–R223. https://doi.org/10.1016/j.cub.2014.01.053

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Royles J, Amesbury MJ, Roland TP, Jones GD, Convey P, Griffiths H, Hodgson DA, Charman DJ (2016) Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula. Oecologia 181:931–945

    Article  PubMed  PubMed Central  Google Scholar 

  • Sersic AN, Cosacov A, Cocucci AA, Johnson LA, Pozner R, Avila LJ, Sites JW Jr, Morando M (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 103:475–494

    Article  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Smith RIL (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. British Antarctic Survey Scientific Reports No. 68. British Antarctic Survey, London

  • Smith RIL (1979) Peat forming vegetation in the Antarctic. In: Kivunen E, Heikurainen EL, Pakarinen P (eds) Classification of peat and peatlands. International Peat Society, Helsinki, pp 38–67

    Google Scholar 

  • Smith RIL (1990) Signy Island as a paradigm of biological and environmental change in Antarctic terrestrial ecosystems. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 32–50

    Chapter  Google Scholar 

  • Smith RIL (1996) Terrestrial and freshwater biotic components of the western Antarctic Peninsula. In: Ross R, Hofmann E, Quetin L (eds) Foundations for ecological research west of the Antarctic Peninsula. American Geophysical Union, Washington, D.C., pp 15–59

    Chapter  Google Scholar 

  • Souza-Chies TT, Bittar G, Nadot S, Carter L, Besin E, Lejeune B (1997) Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst Evol 204:109–123. https://doi.org/10.1007/Bf00982535

    Article  Google Scholar 

  • Stech M (1999) Molekulare Systematik haplolepider Laubmoose (Dicrananae, Bryopsida). Freie Universität Berlin, Berlin

    Google Scholar 

  • Stech M, Quandt D (2010) 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa 9:196–228

    Article  Google Scholar 

  • Stevens MI, Greenslade P, Hogg ID, Sunnucks P (2006) Southern Hemisphere springtails: could any have survived glaciation of Antarctica? Mol Biol Evol 23:874–882

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. ‎Q J R Meteorol Soc 131:2961–3012. https://doi.org/10.1256/qj.04.176

    Article  Google Scholar 

  • Viana DS, Santamaría L, Figuerola J (2016) Migratory birds as global dispersal vectors. Trends Ecol Evol 31:763–775

    Article  PubMed  Google Scholar 

  • Vyverman W, Verleyen E, Wilmotte A, Hodgson DA, Willems A, Peeters K, Van de Vijver B, De Wever A, Leliaert F, Sabbe K (2010) Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci 4:103–113

    Article  Google Scholar 

  • White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgements

We thank Helen Peat at the AAS herbarium (British Antarctic Survey; BAS) for access to herbarium specimens; Dr. Jessica Royles for providing fresh samples, Instituto Antartico Chileno (INACH) for logistic support; and Laura Gerrish (BAS) for preparing Fig. 2. Thanks to James Fenton for the photographs shown in Fig. 1. This research was funded by a Natural Environment Research Council (NERC) Ph.D. studentship (ref. NE/K50094X/1) to E.M.B. and supported by NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team. This study also contributes to the Scientific Committee on Antarctic Research ‘State of the Antarctic Ecosystem’ programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Biersma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biersma, E.M., Jackson, J.A., Bracegirdle, T.J. et al. Low genetic variation between South American and Antarctic populations of the bank-forming moss Chorisodontium aciphyllum (Dicranaceae). Polar Biol 41, 599–610 (2018). https://doi.org/10.1007/s00300-017-2221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2221-1

Keywords

Navigation