Skip to main content

Advertisement

Log in

Tracing sea ice algae into various benthic feeding types on the Chukchi Sea shelf

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Climate change in the Arctic is expected to have drastic effects on marine primary production sources by shifting ice-associated primary production to an overall greater contribution from pelagic primary production. This shift could influence the timing, amount, and quality of algal material reaching the benthos. We determined the contribution of sea ice particulate organic matter (iPOM) to benthic-feeding invertebrates by examining concentrations and stable carbon isotope values (expressed as δ13C values) of three fatty acids (FAs) prominent in diatoms: 16:4(n-1), 16:1(n-7), and 20:5(n-3). Our underlying assumption was that diatoms make up the majority in sea ice algal communities compared with phytoplankton communities. According to the FA concentrations, subsurface deposit feeders consumed the most iPOM and suspension feeders the least. Conversely, there were little differences in δ13C values of FAs between deposit and suspension feeders, but the higher δ13C values of 16:1(n-7) in omnivores indicated greater consumption of iPOM. We suggest that omnivores accumulate the ice algal FA biomarker from their benthic prey, which in turn may feed on ice algae from a deposited sediment pool. The dissimilar results between FA concentrations and isotope values suggest that the FAs used here may not be sufficiently source specific and that other unaccounted production sources, such as bacteria, may also contribute to the FA pool. We propose that FA isotope values are a more indicative biomarker than FA concentrations, with a further need for more specific ice algal biomarkers to resolve the question of ice algal contributions to the Arctic benthic food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrajano TA Jr, Murphy DE, Fang J, Comet P, Brooks JM (1994) 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Org Geochem 21(6/7):611–617

    Article  CAS  Google Scholar 

  • Ackman RG, Sipos JC (1964) Application of specific response factors in the gas chromatographic analysis of methyl esters of fatty acids with flame ionization detectors. J Am Oil Chem Soc 41:377–378

    Article  CAS  Google Scholar 

  • Ambrose WG, Von Quillfeldt CH, Clough LM, Tilney PR, Tucker W (2005) The sub-ice algal community in the Chukchi Sea: large and small scale patterns of abundance based on images from a remotely operated vehicle. Polar Biol 28:784–795

    Article  Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S (2008) Impact of a shrinking Arctic ice cover on marine primary production. Geophys Res Lett 35:L19603

    Article  Google Scholar 

  • Arrigo KR, Perovich DK, Pickart RS, Brown ZW, van Dijken GL et al (2012) Massive phytoplankton blooms under Arctic Sea ice. Science 336:1408

    Article  CAS  PubMed  Google Scholar 

  • Bajpai P, Bajpai PK (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J Biotechnol 30:161–183

    Article  CAS  PubMed  Google Scholar 

  • Bates SS, Cota GF (1986) Fluorescence induction and photosynthetic responses of Arctic ice algae to sample treatment and salinity. J Phycol 22:421–429

    Article  CAS  Google Scholar 

  • Bec A, Perga M-E, Koussoropolis A, Berdoux G, Desvilettes C, Bourdier G, Mariotti A (2011) Assessing the reliability of fatty acid-specific stable isotope analysis for trophic studies. Methods Ecol Evol 2:651–659

    Article  Google Scholar 

  • Belchansky GI, Douglas DC, Platonov NG (2004) Duration of the Arctic sea ice melt season: regional and interannual variability, 1979–2001. J Climate 17:67–80

    Article  Google Scholar 

  • Bell MV, Henderson RJ, Sargent JR (1986) The role of polyunsaturated fatty acids in fish. Comp Biochem Physiol 83B(4):711–719

    CAS  Google Scholar 

  • Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv Biochem Eng/Biotechnol 9:49–125

    Article  Google Scholar 

  • Blanchard AL, Parris CL, Knowlton AL, Wade NR (2013) Benthic ecology of the northeastern Chukchi Sea. Part I. Environmental characteristics and macrofaunal community structure, 2008–2010. Cont Shelf Res 67:52–66

    Article  Google Scholar 

  • Bluhm BA, Gradinger R (2008) Regional variability in food availability for Arctic marine mammals. Ecol Appl 18(sp2):S77–S96

    Article  PubMed  Google Scholar 

  • Bluhm BA, Iken K, Mincks SL, Sirenko BI, Holladay BA (2009) Community structure of epibenthic megafauna in the Chukchi Sea. Aquat Biol 7:269–293

    Article  Google Scholar 

  • Booth BC, Horner RA (1997) Microalgae on the Arctic Ocean Section, 1994: species abundance and biomass. Deep-Sea Res II 44(8):1607–1622

    Article  Google Scholar 

  • Brown ZW, Arrigo KR (2012) Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES J Mar Sci 69(7):1180–1193

    Article  Google Scholar 

  • Brown TA, Belt ST, Philippe B, Mundy CJ, Massé G, Poulin M, Gosselin M (2011) Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice. Polar Biol 34:1857–1868

    Article  Google Scholar 

  • Brown TA, Belt ST, Tatarek A, Mundy CJ (2014) Source identification of the Arctic sea ice proxy IP25. Nat Comm 5:4197

    CAS  Google Scholar 

  • Budge SM, Parrish CC (1998) Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Org Geochem 29:1547–1559

    Article  CAS  Google Scholar 

  • Budge SM, Wooller MJ, Springer AM, Iverson SJ, McRoy CP, Divoky GJ (2008) Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157:117–129

    Article  CAS  PubMed  Google Scholar 

  • Budge SM, Wang SW, Hollmén TE, Wooller MJ (2011) Carbon isotopic fractionation in eider adipose tissue varies with fatty acid structure: implications for trophic studies. J Exp Biol 214:3790–3800

    Article  CAS  PubMed  Google Scholar 

  • Campbell RG, Sherr EB, Ashjian CJ, Plourde S, Sherr BF, Hill V, Stockwell DA (2009) Mesozooplankton prey preference and grazing impact in the Western Arctic Ocean. Deep-Sea Res II 56:1274–1289

    Article  Google Scholar 

  • Carroll ML, Carroll JC (2003) The Arctic Seas. In: Black KD, Schimmield GB (eds) Biogeochemistry of Marine Systems. CRC Press, Blackwell Publishing Ltd., Oxford, pp 127–156

    Google Scholar 

  • Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid markers in the pelagic marine environment. Adv Mar Biol 46:225–340

    Article  PubMed  Google Scholar 

  • DeBaar HJW, Farrington JW, Wakeham SG (1983) Vertical flux of fatty acids in the North Atlantic Ocean. J Mar Res 41:19–41

    Article  CAS  Google Scholar 

  • DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea procaryotes. Appl Environ Microbiol 51(4):730–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dethier MN, Sosik E, Galloway AWE, Duggins DO, Simenstad CA (2013) Addressing assumptions: variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies. Mar Ecol Prog Ser 478:1–14

    Article  CAS  Google Scholar 

  • Divine LM, Bluhm BA, Mueter FJ, Iken K (2015) Diet analysis of Alaska Arctic snow crabs (Chionoecetes opilio) using stomach contents and δ13C and δ15N stable isotopes. Deep-Sea Res. doi:10.1016/j.dsr2.2015.11.009

    Google Scholar 

  • Ershova EA, Hopcroft RR, Kosobokova KN (2015) Inter-annual variability of summer mesozooplankton communities of the western Chukchi Sea: 2004–2012. Polar Biol 38(9):1461–1481

    Article  Google Scholar 

  • Farrow GE, Syvitski JPM, Tunnicliffe V (1983) Suspended particulate loading on the macrobenthos in a highly turbid fjord: Knight Inlet, British Columbia. Can J Fish Aquat Sci 40:273–288

    Article  Google Scholar 

  • Feder HM, Naidu AS, Jewett SC, Hameedi JM, Johnson WR, Whitledge TE (1994) The northeastern Chukchi Sea: benthos-environmental interactions. Mar Ecol Prog Ser 111:171–190

    Article  Google Scholar 

  • Feder HM, Jewett SC, Blanchard A (2005) Southeastern Chukchi Sea (Alaska) epibenthos. Polar Biol 28:402–421

    Article  Google Scholar 

  • Feder HM, Jewett SC, Blanchard AL (2007) Southeastern Chukchi Sea (Alaska) macrobenthos. Polar Biol 30:261–275

    Article  Google Scholar 

  • Fischer G (1991) Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean. Mar Chem 35:581–596

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Forest A, Sampei M, Makabe R, Sasaki H, Barber DG, Gratton Y, Wassmann P, Fortier L (2008) The annual cycle of particulate organic carbon export in Franklin Bay (Canadian Arctic): environmental control and food web implications. J Geophys Res Oceans 113:C03S05

    Google Scholar 

  • Gaillard B, Meziane T, Tremblay R, Archambault P, Blicher ME, Chauvaud L, Rysgaard S (2017) Food resources of the bivalve Astarte elliptica in a sub-Arctic fjord: a multi-biomarker approach. Mar Ecol Prog Ser 567:139–156

    Article  Google Scholar 

  • Glover AG, Smith CR, Mincks SL, Sumida PYG, Thurber AR (2008) Macrofaunal abundance and composition on the West Antarctic Peninsula continental shelf: evidence for a sediment ‘food bank’ and similarities to deep-sea habitats. Deep-Sea Res II 55:2491–2501

    Article  Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res II 44(8):1623–1644

    Article  CAS  Google Scholar 

  • Grebmeier J, McRoy CP, Feder HM (1988) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. 1. Food supply source and benthic biomass. Mar Ecol Prog Ser 48:57–67

    Article  Google Scholar 

  • Grebmeier JM, Feder HM, McRoy CP (1989) Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi Seas. 11. Benthic community structure. Mar Ecol Prog Ser 51:253–268

    Article  Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI (2006) Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Prog Oceanogr 71:331–361

    Article  Google Scholar 

  • Haecky P, Jonsson S, Anderson A (1998) Influence of sea ice on the composition of the spring phytoplankton bloom in the northern Baltic Sea. Polar Biol 20:1–8

    Article  Google Scholar 

  • Hansell DA, Whitledge TW, Goering JJ (1993) Patterns of nitrate utilization and new production over the Bering-Chukchi shelf. Cont Shelf Res 13:601–627

    Article  Google Scholar 

  • Hendriks IE, van Duren LA, Herman PM (2003) Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. J Exp Mar Biol Ecol 296(2):199–213

    Article  CAS  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Horner R, Schrader GC (1982) Relative contributions of ice algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35(4):485–503

    Article  Google Scholar 

  • Hückstädt LA, Koch PL, McDonald BI, Goebel ME, Crocker DE, Costa DP (2012) Stable isotope analyses reveal individual variability in the trophic ecology of a top marine predator, the southern elephant seal. Oecologia 169:395–406

    Article  PubMed  Google Scholar 

  • Hunt GL Jr, Stabeno P, Walters G, Sinclair E, Brodeur RD, Napp JM, Bond NA (2002) Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep-Sea Res II 49:5821–5853

    Article  Google Scholar 

  • Iken K, Bluhm B, Dunton K (2010) Benthic food-web structure under differing water mass properties in the southern Chukchi Sea. Deep-Sea Res II 57:71–85

    Article  CAS  Google Scholar 

  • Iverson SJ (2009) Tracing aquatic food webs using fatty acids: From qualitative indicators to quantitative determination. In: Arts MT, Brett MT, Kainz M (eds) Lipids in Aquatic Ecosystems. Springer, New York, pp 281–307

    Chapter  Google Scholar 

  • Iverson SJ, Frost KJ, Lang S (2002) Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: factors contributing to among and within species variability. Mar Ecol Progr Ser 241:161–181

    Article  CAS  Google Scholar 

  • Iverson SJ, Field C, Bowen WD, Blanchard W (2004) Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol Monogr 74:211–235

    Article  Google Scholar 

  • Jumars PA, Wheatcroft RA (1989) Responses of benthos to changing food quality and quantity, with a focus on deposit feeding and bioturbation. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: present and past. Wiley, New York, pp 235–253

    Google Scholar 

  • Kelly JR, Scheibling RE (2012) Fatty acid as dietary tracers in benthic food webs. Mar Ecol Prog Ser 446:1–22

    Article  CAS  Google Scholar 

  • Kohlbach D, Graeve M, Lange BA, David C, Peeken I, Flores H (2016) The importance of ice algae-produced carbon in the central Arctic Ocean ecosystem: food web relationships revealed by lipid and stable isotope analysis. Limnol Oceanogr 61:2027–2044

    Article  CAS  Google Scholar 

  • Kolts JM, Lovvorn JR, North CA, Grebmeier JM, Cooper LW (2013) Effects of body size, gender and prey availability in diets of snow crabs in the northern Bering Sea. Mar Ecol Prog Ser 483:209–220

    Article  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gulliksen B, Horner R, Hoshiai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota. Polar Biol 12:429–444

    Google Scholar 

  • Leu E, Wiktor J, Søreide JE, Berge J, Falk-Petersen S (2010) Increased irradiance reduces food quality of sea ice algae. Mar Ecol Prog Ser 411:49–60

    Article  CAS  Google Scholar 

  • Lopez GR, Levinton JS (1987) Ecology of deposit-feeding animals in marine sediments. Q Rev Biol 62(3):235–260

    Article  Google Scholar 

  • Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024

    Article  Google Scholar 

  • McMahon KW, Ambrose WG Jr, Johnson BJ, Sun M-Y, Lopez GR, Clough LM, Carroll ML (2006) Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar Ecol Prog Ser 310:1–14

    Article  Google Scholar 

  • McTigue ND, Dunton KH (2014) Trophodynamics and organic matter assimilation pathways in the northeast Chukchi Sea, Alaska. Deep Sea Res II 102:84–96

    Article  CAS  Google Scholar 

  • Mincks SL, Smith CR, DeMaster DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Mar Ecol Prog Ser 300:3–19

    Article  CAS  Google Scholar 

  • Monson KD, Hayes JM (1982) Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Saccharomyces cerevisiae. Isotopic fractionation in lipid synthesis as evidence for peroxisomal regulation. J Biol Chem 257(10):5568–5575

    CAS  PubMed  Google Scholar 

  • Oxtoby LE, Mathis JT, Juranek LW, Wooller MJ (2016) Estimating stable carbon isotope values of microphytobenthos in the Arctic for the application to food web studies. Polar Biol 39:473–483

    Article  Google Scholar 

  • Parrish CC (1999) Determination of total lipid, lipid classes and fatty acids in aquatic samples. In: Arts MT, Wainman BC (eds) Lipids in freshwater ecosystems. Springer, New York, pp 4–12

    Chapter  Google Scholar 

  • Parrish CC (2013) Lipids in marine ecosystems. ISRN Oceanography. doi:10.5402/2013/604045

    Google Scholar 

  • Perovich DK, Richter-Menge JA (2009) Loss of sea ice in the Arctic. Annu Rev Marine Sci 1:417–441

    Article  Google Scholar 

  • Perovich D, Gerland S, Hendricks S, Meier W, Nicolaus M, Richter-Menge J, Tschudi M (2013) Sea ice. Arctic Report Cart: Update 2013, www.arctic.noaa.gov/reportcard/sea_ice.html

  • Petersen GH, Curtis MA (1980) Differences in energy flow through major components of subarctic, temperate and tropical marine shelf ecosystems. Dana 1:53–64

    Google Scholar 

  • Pickart RS, Pratt LJ, Torres DJ, Whitledge TE, Proshutinsky AY, Aagaard K, Agnew TA, Moore GWK, Dail HJ (2010) Evolution and dynamics of the flow through Herald Canyon in the western Chukchi Sea. Deep-Sea Res II 57:5–26

    Article  Google Scholar 

  • Pisareva MN, Pickart RS, Iken K, Ershova EA, Grebmeier JM, Cooper LW, Bluhm BA, Nobre C, Hopcroft RR, Hu H, Wang J, Ashjian CJ, Kosobokova KN, Whitledge TE (2015) The relationship between patterns of benthic fauna and zooplankton in the Chukchi Sea and physical forcing. Oceanography 28:68–83

    Article  Google Scholar 

  • Ravelo AM, Konar B, Trefry JH, Grebmeier JM (2014) Epibenthic community variability in the northeastern Chukchi Sea. Deep-Sea Res II 102:119–131

    Article  Google Scholar 

  • Schmidt K, Atkinson A, Petzke K-J, Voss M, Pond DW (2006) Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnol Oceanogr 51(5):2409–2427

    Article  CAS  Google Scholar 

  • Shulse CN, Allen EE (2011) Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages. PLoS ONE 6(5):e20146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Søreide JE, Hop H, Carroll ML, Falk-Petersen S, Hegseth EN (2006) Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-food source food web model. Prog Oceanogr 71:59–87

    Article  Google Scholar 

  • Springer AM, McRoy CP, Turco KR (1989) The paradox of pelagic food webs in the orthern Bering Sea—II. Zooplankton communities. Cont Shelf Res 9(4):359–386

    Article  Google Scholar 

  • Stead RA, Thompson RJ (2006) The influence of an intermittent food supply on the feeding behaviour of Yoldia hyperborea (Bivalvia: Nuculanidae). J Exp Mar Biol Ecol 332:37–48

    Article  Google Scholar 

  • Sun M-Y, Clough LM, Carroll ML, Dai J, Ambrose WG Jr, Lopez GR (2009) Different responses of two common Arctic macrobenthic species (Macoma balthica and Monoporeia affinis) to phytoplankton and ice algae: will climate change impacts be species specific? J Exp Mar Biol Ecol 376:110–121

    Article  Google Scholar 

  • Szymanski A, Gradinger R (2016) The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea. Polar Biol 39:309–325

    Article  Google Scholar 

  • Thomas DN, Papadimitriou S (2003) Biogeochemistry of sea ice. In: Thomas DN, Dieckmann GS (eds) Sea ice: an introduction to its physics, chemistry, biology and geology. Blackwell Science, Oxford, pp 267–302

    Chapter  Google Scholar 

  • Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of carbon isotopes in animal tissues: implication for δ13C analysis of diet. Oecologia 57:32–37

    Article  CAS  PubMed  Google Scholar 

  • Tremblay JÉ, Gagnon J (2009) The effects of irradiance and nutrient supply on the productivity of Arctic waters: a perspective on climate change. In: Nihoul JCJ, Kostianoy AG (eds) Influence of climate change on the changing Arctic and sub-Arctic conditions. Springer, Netherlands, pp 73–93

    Chapter  Google Scholar 

  • Tremblay G, Belzile C, Gosselin M, Poulin M, Roy S, Tremblay JÉ (2009) Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat Microb Ecol 54:55–70

    Article  Google Scholar 

  • Tu KL, Blanchard AL, Iken K, Horstmann-Dehn L (2015) Small-scale spatial variability in benthic food webs in the northeastern Chukchi Sea. Mar Ecol Prog Ser 528:19–37

    Article  Google Scholar 

  • Van der Loeff MMR, Meyer R, Rudels B, Rachor E (2002) Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and 234Th depletion. Deep-Sea Res I 49:1941–1958

    Article  Google Scholar 

  • Walsh JJ, McRoy CP, Coachman LK, Goering JJ, Nihoul JJ et al (1989) Carbon and nitrogen cycling within the Bering/Chukchi Seas: source regions for organic matter effecting AOU demands of the Arctic Ocean. Prog Oceanogr 22:277–359

    Article  Google Scholar 

  • Wang SW, Budge SM, Gradinger RR, Iken K, Wooller MJ (2014) Fatty acid stable isotope characteristics of sea ice and pelagic particulate organic matter in the Bering Sea: tools for estimating sea ice algal contribution to Arctic food web production. Oecologia 174:699–712

    Article  PubMed  Google Scholar 

  • Wang SW, Budge SM, Iken K, Gradinger RR, Springer AM, Wooller MJ (2015) Importance of sympagic production to Bering Sea zooplankton as revealed from fatty acid-carbon stable isotope analyses. Mar Ecol Prog Ser 518:31–50

    Article  Google Scholar 

  • Wassmann P, Reigstad M (2011) Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24:220–231

    Article  Google Scholar 

  • Weems J, Iken K, Gradinger R, Wooller MJ (2012) Carbon and nitrogen assimilation in the Bering Sea clams Nuculana radiata and Macoma moesta. J Exp Mar Biol Ecol 430–431:32–42

    Article  Google Scholar 

  • Wegner C, Hölemann JA, Dmitrenko I, Kirillov S, Tuschling K, Abramova E, Kassens H (2003) Suspended particulate matter on the Laptev Sea shelf (Siberian Arctic) during ice-free conditions. Estuar Coast Shelf Sci 57:55–64

    Article  Google Scholar 

  • Weingartner TJ, Aagaard K, Woodgate R, Danielson S, Sasaki Y, Cavalieri D (2005) Circulation on the north central Chukchi Sea shelf. Deep-Sea Res II 52:3150–3174

    Article  Google Scholar 

  • Weslawski JM, Wlodarska-Kowalczuk M, Kedra M, Legezynska J, Kotwicki L (2012) Eight species that rule today’s European Arctic fjord benthos. Pol Polar Res 3:225–238

    Google Scholar 

  • Wlodarska-Kowalczuk M, Pearson TH, Kendall MA (2005) Benthic response to chronic natural physical disturbance by glacial sedimentation in an Arctic fjord. Mar Ecol Prog Ser 303:31–41

    Article  Google Scholar 

  • Woodgate RA, Aagaard K, Weingatner T (2005) A year in the physical oceanography of the Chukchi Sea: moored measurements from autumn 1990-91. Deep-Sea Res II 52:3116–3149

    Article  Google Scholar 

  • Wulff A, Iken K, Quartino ML, Al-Handal A, Wiencke C, Clayton MN (2009) Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot Mar 52:491–507

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the North Pacific Research Board project #1227 to KI (publication #643). This research was supported in part by a UAF Center for Global Change Student Research Grant with funds from the Cooperative Institute for Alaska Research. Additional travel funding was available through the University of Alaska Fairbanks (UAF) graduate school and the UAF School of Fisheries and Ocean Sciences Robert Byrd award. We would like to thank the scientists and crew of the Russian-American Long-term Census of the Arctic (RUSALCA) cruise, the Chukchi Sea Offshore Monitoring in Drilling Area (COMIDA) cruise and the Arctic Ecosystem Integrated Survey (Arctic Eis) cruise in 2012 for all of their help with sample collection. We would also like to thank Timothy Howe and Norma Haubenstock at the Alaska Stable Isotope Facility and Mette Kaufman (UAF) for laboratory assistance. Lastly, we would also like to thank Seth Danielson for graphics help, Arny Blanchard for statistical support, and Charlotte Regula-Whitefield for methodology assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schollmeier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schollmeier, T., Oliveira, A.C.M., Wooller, M.J. et al. Tracing sea ice algae into various benthic feeding types on the Chukchi Sea shelf. Polar Biol 41, 207–224 (2018). https://doi.org/10.1007/s00300-017-2182-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2182-4

Keywords

Navigation