Skip to main content

Advertisement

Log in

Zooplankton electron transport system activity and biomass in the western Ross Sea (Antarctica) during austral summer 2014

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The present study provides insight into specific zooplankton oxygen and carbon demands (per unit biomass) and community zooplankton respiration and carbon requirements in the Ross Sea (Antarctica). In the literature, there is a lack of data in this area. The role of mesozooplankton in carbon remineralisation in coastal and pelagic environments was evaluated. The zooplankton composition, abundance and biomass were analysed. In the marine carbon cycle, zooplankton from the epipelagic realm has a key role. Estimation of the electron transport system activity represents a specific and highly sensitive method to evaluate the zooplankton carbon requirements from the sinking flux as an indication of the respiratory activity. We focus here on 26 sampling stations in the western sector of the Ross Sea, in which the 0–250-m layer was investigated during the austral summer of 2014. The oxygen consumption from the electron transport system analysis was converted into carbon demand. Differences in carbon requirements were observed, and their relationships to zooplanktonic composition and abundance were investigated, along with their relationships to seawater temperature, food availability, non-living specimens and pteropod faecal pellet abundance. A positive correlation between carbon demand and temperature was highlighted. The change in copepod community composition was relevant in terms of species and relative size ranges. The zooplankton biomass ranged from 41.25 to 171.46 mg m−3 among the stations, which is in agreement with the late summer trophic condition, with higher values for the more coastal stations. Positive correlation between zooplankton biomass and community metabolism per day was revealed. With its recycling of the particulate organic material that originates in the epipelagic layer, the zooplankton compartment participates in the decrease in the input of material, mainly in the two coastal areas investigated, with respect the more pelagic zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Accornero A, Manno C, Esposito F, Gambi MC (2003) The vertical flux of particulate matter in the polynya of Terra Nova Bay. Part II. Biological components. Antarct Sci 15:175–188

    Article  Google Scholar 

  • Arrigo KR, Lizotte MP, Worthen DL, Dixon P, Dieckmann G (1997) Primary production in Antarctic sea ice. Science 276:394–397

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Worthen DL, Dixon P, Lizotte MP (1998) productivity of near-surface communities within Antarctic pack ice. In: Lizotte MP, Arrigo KR (eds) Antarctic sea ice biological processes, interactions and variability, vol 73. Antarctic Research Series, Washington, DC, pp 23–43

    Chapter  Google Scholar 

  • Azzaro M, La Ferla R, Azzaro F (2006) Microbial respiration in the aphotic zone of the Ross Sea (Antarctica). Mar Chem 99:199–209

    Article  CAS  Google Scholar 

  • Båmsted U (1979) Seasonal variation in respiratory rate and ETS activity of deep water zooplankton from the Swedish west coast. In: Naylor E, Hartnoll RG (eds) Proceedings 13th European marine biology symposium. Pergamon Press, Oxford, pp 267–274

    Google Scholar 

  • Båmsted U (1980) ETS activity as an estimator of respiratory rate of zooplankton populations. The significance of variations in an environmental factor. J Exp Mar Biol Ecol 42:267–283

    Article  Google Scholar 

  • Bathmann U, Liebezeit G (1986) Chlorophyll in copepod faecal pellets: changes in pellet numbers and pigment content during a declining Baltic spring bloom. Pubbl Staz Zool Napoli (I: Mar Ecol) 7:59–73

    Google Scholar 

  • Bigidaire RR, King FD, Biggs DC (1982) Glutamate dehydrogenase and respiratory electron transport system activities in the Gulf of Mexico zooplankton. J Plankton Res 4:895–912

    Article  Google Scholar 

  • Boysen-Ennen E, Hagen W, Hubold G, Piatkowski U (1991) Zooplankton biomass in the ice-covered Weddell Sea, Antarctica. Mar Biol 111:227–235

    Article  Google Scholar 

  • Bradford-Grieve JM, Nodder SD, Jillett JB, Currie K, Lassey KR (2001) Potential contribution that the copepod Neocalanus tonsus makes to downward carbon flux in the Southern Ocean. J Plankton Res 23:963–975

    Article  Google Scholar 

  • Brierley AS, Thomas DN (2002) Ecology of southern ocean pack ice. Adv Mar Biol 43:171–276

    Article  PubMed  Google Scholar 

  • Christiansen B, Beckmann W, Weikert W (2001) The structure and carbon demand of bathyal benthic boundary layer community: a comparison of two oceanic locations in the NE-Atlantic. Deep Sea Res II 48:2409–2424

    Article  CAS  Google Scholar 

  • Conover RJ, Lalli CM (1974) Feeding and growth in Clione limacina (Phipps), a pteropod mollusc. II. Assimilation, metabolism, and growth efficiency. J Exp Mar Biol Ecol 16:131–154

    Article  CAS  Google Scholar 

  • Conover RJ, Huntley M (1991) Copepods in ice-covered seas. Distribution, adaptations to seasonally limited food, metabolism, growth pattern and life-cycle strategies in polar seas. J Mar Syst 2:1–41

    Article  Google Scholar 

  • Devol AH, Packard TT (1978) Seasonal changes in respiratory enzyme activity and productivity in Lake Washington microplankton. Limnol Oceanogr 23:104–111

    Article  CAS  Google Scholar 

  • Fabiano M, Pusceddu A (1998) Total and hydrolizable particulate organic matter (carbohydrates, proteins and lipids) at a coastal station in Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 19:125–132

    Article  Google Scholar 

  • Finlay BJ, Arja Span, Ochsenbein-Gattlen C (1983) Influence of physiological state in indices of respiration rate in protozoa. Comp Biochem Physiol 74A:211–219

    Article  CAS  Google Scholar 

  • Fischer G, Futterer D, Gersonde R, Honjo S, Osterman DR, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Article  Google Scholar 

  • Fowler SW, Small LF, La Rosa J (1991) Seasonal particulate carbon flux in the coastal northwestern Mediterranean Sea, and the role of zooplankton faecal matter. Oceanol Acta 14:77–86

    CAS  Google Scholar 

  • Gilmer RW, Lalli CM (1990) Bipolar variation in Clione, a gymnosomatous pteropod. Am Malacol Bull 81:67–75

    Google Scholar 

  • Gómez M, Martínez I, Hernández-León S, Packard T (2008) Does ETS activity follow Kleiber’s law? International symposium on eastern boundary upwelling ecosystems (2–6 Junio 2008). Las Palmas de Gran Canaria, Canary Islands, pp 186–187

    Google Scholar 

  • Granata A, Guglielmo L, Greco S, Vacchi M, Sidoti O, Zagami G, La Mesa M (2000) Spatial distribution and feeding habits of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea (Antarctica). In: Faranda F, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, Berlin, pp 369–393

    Chapter  Google Scholar 

  • Granata A, Zagami G, Vacchi M, Guglielmo L (2009) Summer and spring trophic niche of larval and juvenile Pleuragramma antarcticum in the Western Ross Sea, Antarctica. Polar Biol 32:369–382

    Article  Google Scholar 

  • Guglielmo L, Carrada GC, Catalano G, Dell’Anno A, Fabiano M, Lazzara L, Mangoni O, Pusceddu A, Saggiomo V (2000) Structural and functional properties of microbial communities in the annual sea-ice at Terra Nova Bay (Ross Sea-Antarctica). Polar Biol 23:137–146

    Article  Google Scholar 

  • Guglielmo L, Carrada GC, Catalano G, Cozzi S, Dell’Anno A, Fabiano M, Granata A, Lazzara L, Lorenzelli R, Manganaro A, Mangoni O, Misic C, Modigh M, Pusceddu A, Saggiomo V (2004) Biogeochemistry and algal communities in the annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Chem Ecol 20:S43–S55

    Article  CAS  Google Scholar 

  • Guglielmo L, Zagami G, Saggiomo V, Catalano G, Granata A (2007) Copepods in spring annual sea ice at Terra Nova Bay (Ross Sea, Antarctica). Polar Biol 30:747–758

    Article  Google Scholar 

  • Halsband-Lenk C, Koppelmann R, Weikert H (2003) Carbon requirements of deep-sea zooplankton estimated from ETS measurements in relation to size fraction and taxonomic composition. In: Yalmaz A (ed) Oceanography of Eastern Mediterranean and Black Sea. Tubitak, Ankara, pp 805–813

    Google Scholar 

  • Hecq JH, Guglielmo L, Goffart A, Catalano G, Goosse H (2000) A modeling approach to the Ross Sea plankton ecosystem. In: Faranda FM, Guglielmo L, Ianora A (eds) Ross Sea ecology. Springer, Berlin, pp 395–411

    Chapter  Google Scholar 

  • Hernández-León S, Ikeda T (2005) A global assessment of mesozooplankton respiration in the ocean. J Plankton Res 27:153–158

    Article  Google Scholar 

  • Hernández-León S, Montero I (2006) Zooplankton biomass estimated from digitalized images in Antarctic waters: a calibration exercise. J Geophys Res Oceans 111:C05S03

    Article  Google Scholar 

  • Hernández-León S, Torres S, Gómez M, Montero I, Almeida C (1999) Biomass and metabolism of zooplankton in the Bransfield Strait (Antarctic Peninsula) during austral spring. Polar Biol 21:214–219

    Article  Google Scholar 

  • Hernández-León S, Almeida C, Portillo-Hahnefeld A, Gómez M, Montero I (2000) Biomass and potential feeding, respiration and growth of zooplankton in the Bransfield Strait (Antarctic Peninsula) during austral summer. Polar Biol 23:679–690

    Article  Google Scholar 

  • Herrera A, Packard T, Santana A, Gómez M (2011) Effect of starvation and feeding on respiratory metabolism in Leptomysis lingvura (G.O. Sars, 1866). J Exp Mar Biol Ecol 409:154–159

    Article  Google Scholar 

  • Herrera A, Gómez M, Packard TT, Fernández de Puelles ML (2014) Zooplankton biomass and electron transport system activity around the Balearic Islands (western Mediterranean). J Mar Syst 131:54–62

    Article  Google Scholar 

  • Hirch S, Martin B, Christiansen B (2009) Zooplankton metabolism and carbon demand at two seamounts in the NE Atlantic. Deep Sea Res II 56:2656–2670

    Article  CAS  Google Scholar 

  • Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S (2013) Latitudinal clines: an evolutionary view on biological rhythms. Proc Biol Sci 280:20130433

    Article  PubMed  PubMed Central  Google Scholar 

  • Ikeda T (1970) Relationship between respiration rate and body size in marine plankton animals as a function of the temperature of habitat. Bull Fac Fish Hokkaido Univ 21:91–112

    Google Scholar 

  • Ikeda T (1985) Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar Biol 85:1–11

    Article  Google Scholar 

  • Ikeda T, Kanno Y, Ozaki K, Shinada A (2001) Metabolic rates of marine copepods as a function of body mass and temperature. Mar Biol 139:587–596

    Article  Google Scholar 

  • Jacques G, Panouse M (1991) Biomass and composition of size fractionated phytoplankton in the Weddell-Scotia confluence area. Polar Biol 11:315–328

    Article  Google Scholar 

  • Kenner RA, Ahmed SJ (1975a) Measurement of electron transport activities in marine phytoplankton. Mar Biol 33:119–128

    Article  CAS  Google Scholar 

  • Kenner RA, Ahmed SJ (1975b) Correlation between oxygen utilization and electron transport activity in marine phytoplankton. Mar Biol 33:129–133

    Article  CAS  Google Scholar 

  • King FD, Packard TT (1975) Respiration and the activity of respiratory electron transport system in marine zooplankton. Limnol Oceanogr 20:849–854

    Article  Google Scholar 

  • King FD, Devol AH, Packard TT (1978) On plankton biomass and metabolic activity from the eastern tropical North Pacific. Deep Sea Res 25:689–704

    Article  Google Scholar 

  • Koppelmann R, Weikert H (2003) Deep-sea zooplankton ecology of the eastern Mediterranean. State of the art and perspectives. CIESM Workshop Monogr 23:47–53

    Google Scholar 

  • Koppelmann R, Schafer P, Schiebel R (2000) Organic carbon losses measured by heterotrophic activity of mesozooplankton and CaCO3 flux in bathypelagic zone of the Arabian Sea. Deep Sea Res II 47:169–187

    Article  CAS  Google Scholar 

  • Koppelmann R, Weikert H, Halsband-Lenk C (2004) Mesozooplankton community respiration and its relation to particle flux in the oligotrophic eastern Mediterranean. Global Biogech Cycles 18:GB1039

    Google Scholar 

  • Lambeck K, Esat TM, Potter EK (2002) Links between climate and sea levels for the past three million years. Nature 419:199–206

    Article  CAS  PubMed  Google Scholar 

  • Lampitt RS (1992) The contribution of deep-sea macroplankton to organic remineralization: results from sediment trap and zooplankton studies over the Madeira Abyssal Plain. Deep Sea Res 39:221–233

    Article  Google Scholar 

  • Lancraft TM, Relsenbichler KR, Robison BH, Hopkins TL, Torres JJ (2004) A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctica, with an estimate of fish predation. Deep Sea Res Part II 51:2247–2260

    Article  Google Scholar 

  • Legendre L, Ackley SF, Dieckmann GS, Gullikssen B, Horner R, Hoshai T, Melnikov IA, Reeburgh WS, Spindler M, Sullivan CW (1992) Ecology of sea ice biota-2. Global significance. Polar Biol 12:429–444

    Google Scholar 

  • Leventer A, Dunbar RB (1996) Factors influencing the distribution of diatoms and other algae in the Ross Sea. J Geophys Res 101:18489–18550

    Article  CAS  Google Scholar 

  • Longhurst AR (1991) Role of the marine biosphere in the global carbon cycle. Limnol Oceanogr 36:1507–1526

    Article  CAS  Google Scholar 

  • Longhurst AR, Harrison WG (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123

    Article  Google Scholar 

  • Lopez MDG, Huntley ME (1995) Feeding and diel vertical migration cycles of Metridia gerlachei (Giesbrecht) in coastal waters of the Antarctic Peninsula. Polar Biol 15:21–30

    Article  Google Scholar 

  • Manno C, Tirelli V, Accornero A, Fonda Umani S (2010) Importance of the contribution of Limacina helicina faecal pellets to the carbon pump in Terra Nova Bay (Antarctica). J Plankton Res 32:145–152

    Article  Google Scholar 

  • Marshall SM, Orr AP (1958) On the biology of Calanus fimmarchicus X. Seasonal changes in oxygen consumption. J Mar Biol Ass UK 37:459–472

    Article  Google Scholar 

  • Minutoli R, Guglielmo L (2009) Zooplankton respiratory electron transport system activity (ETS) in the Mediterranean Sea: spatial and diel variability. Mar Ecol Prog Ser 381:199–211

    Article  CAS  Google Scholar 

  • Minutoli R, Guglielmo L (2012) Mesozooplankton carbon requirement in the Tyrrhenian Sea: its vertical distribution, diel variability and relation to particle flux. Mar Ecol Prog Ser 446:91–105

    Article  CAS  Google Scholar 

  • Minutoli R, Granata A, Brugnano C, Zagami G, Guglielmo L (2014) Mesozooplankton carbon requirement in the southern Adriatic Sea: vertical distribution, diel and seasonal variability, relation to particle flux. Mar Ecol Prog Ser 495:91–104

    Article  CAS  Google Scholar 

  • Nelson GC, Bennett E, Berhe AA, Cassman K, DeFries R, Dietz T, Dobermann A, Dobson A, Janetos A, Levy M, Marco D, Nakicenovic N, O’Neill B, Norgaard R, Petschel-Held G, Ojima D, Pingali P, Watson R, Zurek M (2006) Anthropogenic drivers of ecosystem change: an overview. Ecol Soc 11(2):29. http://www.ecologyandsociety.org/vol11/iss2/art29/

  • Owens TG, King FD (1975) The measurement of respiratory electron transport system activity in marine zooplankton. Mar Biol 30:27–36

    Article  Google Scholar 

  • Packard TT (1971) The measurement of electron transport system activity in marine phytoplankton. J Mar Res 29:235–244

    Google Scholar 

  • Packard T, Gómez M (2008) Exploring a first-principles-based model for zooplankton respiration. ICES J Mar Sci 65:371–378

    Article  Google Scholar 

  • Packard TT, Richards FA (1971) Vertical distribution of the activity of the respiratory electron transport system in marine plankton. Limnol Oceanogr 16:60–70

    Article  Google Scholar 

  • Packard TT, Harmon D, Boucher J (1974) Respiratory electron transport activity in plankton from upwelled waters. Tethis 6:213–222

    CAS  Google Scholar 

  • Packard TT, Devol AH, King FD (1975) The effect of temperature on the respiratory electron transport system in marine plankton. Deep Sea Res 22:237–249

    CAS  Google Scholar 

  • Pakhomov EA, Perissinoto R, McQuaid CD (1996) Prey composition and daily rations of myctophid fishes in the Southern Ocean. Mar Ecol Progr Ser 134:1–14

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R, McQuaid CD, Froneman PW (2000) Zooplankton structure and grazing in the Atlantic sector of the Southern Ocean in late austral summer 1993. Part 1. Ecological zonation. Deep Sea Res Part I 47:1663–1686

    Article  Google Scholar 

  • Pusceddu A, Dell’Anno A, Fabiano M (2000) Organic matter composition in coastal sediments at Terra Nova Bay (Ross Sea) during summer 1995. Polar Biol 23:288–293

    Article  Google Scholar 

  • Pusceddu A, Dell’Anno A, Vezzulli L, Fabiano M, Saggiomo V, Cozzi S, Catalano G, Guglielmo L (2009) Microbial loop malfunctioning in the annual sea ice at Terra Nova Bay (Antarctica). Polar Biol 32:337–346

    Article  Google Scholar 

  • Rivkin RB (1991) Seasonal patterns of planktonic production in McMurdo Sound, Antarctica. Am Zool 31:5–16

    Article  Google Scholar 

  • Sakshaug E, Slagstad D (1991) Light and productivity of phytoplankton in polar marine ecosystems: a physiological view. Polar Res 10:69–85

    Article  Google Scholar 

  • Sasaki H, Hattori H, Nishizawa S (1988) Downward flux of particulate organic matter and vertical distribution of calanoid copepods in the Oyashio Water in summer. Deep Sea Res I 35:505–515

    Article  CAS  Google Scholar 

  • Schalk PH (1988) Respiratory electron transport system (ETS) activities in zooplankton and micronekton of the Indo-Pacific region. Mar Ecol Prog Ser 44:25–35

    Article  Google Scholar 

  • Schnack-Schiel SB, Mújica A (1994) The zooplankton of the Antarctic Peninsula region. In: El-Sayed SZ (ed) Southern Ocean ecology. The BIOMASS perspective. Cambridge University Press, London, pp 79–92

    Google Scholar 

  • Smith KL Jr (1982) Zooplankton of a bathyal boundary layer: in situ rates of oxygen consumption and ammonium excretion. Limol Oceanogr 27:461–471

    Article  CAS  Google Scholar 

  • Smith KL Jr (1987) Food energy supply and demand: a discrepancy between particulate organic carbon flux and sediment community oxygen consumption in the deep ocean. Limnol Oceanogr 32:201–220

    Article  Google Scholar 

  • Smith SL, Schnack-Schiel SB (1990) Polar zooplankton. In: Smith WO Jr (ed) Polar oceanography, part b, chemistry, biology, and geology. Academic Press, New York, pp 527–598

    Chapter  Google Scholar 

  • Steedman HF (ed) (1976) General and applied data on formaldehyde fixation and preservation of marine zooplankton. Zooplankton Fixation and Preservation. UNESCO Press, Paris, pp 103–154

    Google Scholar 

  • Steinberg DK, Siver MW, Pilskaln CH (1997) Role of mesozoopelagic zooplankton in the community metabolism of giant larvacean house detritus in Monterey Bay; California, USA. Mar Ecol Prog Ser 147:167–179

    Article  Google Scholar 

  • Thiel H (1983) Meiobenthos and nanobenthos of the deep sea. In: Rowe GT (ed) The Sea, vol 8. Wiley, New York, pp 167–230

    Google Scholar 

  • Thomas AC, Carr ME, Strub PT (2001) Chlorophyll variability in eastern boundary currents. Geophys Res Lett 28:3421–3424

    Article  CAS  Google Scholar 

  • Tranter DJ (1962) Zooplankton abundance in Australasian waters. Aust J Mar Fresh Res 13:106–142

    Article  Google Scholar 

  • Tselepides A, Eleftheriou A (1992) South Aegean (Eastern Mediterranean) continental slope benthos: macroinfaunal-environmental relationships. In: Rowe GT, Pariente V (eds) Deep-sea food chains and the global carbon cycle. Kluwer Academic Publications, Dordecht, pp 139–156

    Chapter  Google Scholar 

  • Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208:1635–1644

    Article  PubMed  Google Scholar 

  • West GB, Woodruff WH, Brown JH (2002) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci USA 99(1):2473–2478

    Article  PubMed  PubMed Central  Google Scholar 

  • Wexels Riser C, Wassmann P, Olli K, Pasternak A, Arashkevich E (2002) Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea. J Mar Res 38:175–188

    Google Scholar 

  • Yamaguchi A, Watanabe Y, Ishida H, Harimoto T, Fursawa K, Suzuki A, Ishizaka J, Ikeda T, Takahashi MM (2002) Community and trophic structure of pelagic copepods down to greater depths in the western subarctic Pacific (WEST-COSMIC). Deep Sea Res I 49:1007–1025

    Article  Google Scholar 

  • Yebra L, Hernández-León S, Almeida C, Bécognée P (2009) Metabolism and biomass vertical distribution of zooplankton in the Bransfield Strait during the austral summer of 2000. Polar Res 28:415–425

    Article  Google Scholar 

Download references

Acknowledgments

Logistical and financial support for this study was provided by the Italian National Programme of Research in Antarctica (PNRA) in the framework of the PIPEX, PIED and SEAROWS project activities. Our thanks go to Mr Giuseppe Arena and Mr Vincenzo Bonanzinga (Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy) for zooplankton sampling and for environmental parameter graphical elaboration, respectively. Thanks go to Dr Christopher Paul Berrie for English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Minutoli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minutoli, R., Brugnano, C., Granata, A. et al. Zooplankton electron transport system activity and biomass in the western Ross Sea (Antarctica) during austral summer 2014. Polar Biol 40, 1197–1209 (2017). https://doi.org/10.1007/s00300-016-2043-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-2043-6

Keywords

Navigation