Skip to main content
Log in

Structural equation modeling of the influence of environmental factors on summer phytoplankton growth in the Ross Sea

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Ross Sea is a highly productive region of the Southern Ocean, and net phytoplankton growth varies seasonally, ranging from zero to near the temperature-limited maximum. Given that variations in growth can result from a number of factors (such as irradiance and iron concentrations), variability in net growth rate was investigated using structural equation modeling (SEM) and data collected during a January–February 2012 cruise to the Ross Sea. Structural equation modeling indicated that summer growth rates were significantly affected by iron concentrations and particulate organic carbon (POC) levels, the latter which most likely contributed to the seasonal depletion of iron by phytoplankton. Conversely, growth rates did not strongly vary with mixed layer depth (and hence irradiance). SEM indicated that if iron concentrations were increased by 1.0 standard deviation (ca. 0.12 nM), summer growth rates would increase by 0.5 standard deviation (ca. 0.07 day−1). Similarly, if POC (a measure of phytoplankton biomass in this region) was increased by 1.0 standard deviation (from 23.0 to 39.4 µmol L−1), growth rates would decrease by 0.31 standard deviations (~0.04 day−1), which we speculate is likely due to heightened iron limitation via increased total iron uptake. This modeling exercise confirms the dominant role of iron in regulating summer phytoplankton rates over the continental shelf of the Ross Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JC, Gerbing DW (1988) Structural equation modeling in practice: a review and recommended two-step approach. Psych Bull 103:411–423

    Article  Google Scholar 

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, VanWoert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  CAS  PubMed  Google Scholar 

  • Arrigo KR, Dunbar RB, Lizotte MP, Robinson DH (2002) Taxon-specific differences in C/P and N/P drawdown for phytoplankton in the Ross Sea. Geophys Res Lett, Antarctica. doi:10.1029/2002GL015277

    Google Scholar 

  • Arrigo KR, Worthen DL, Robinson DH (2003) A coupled ocean-ecosystem model of the Ross Sea: 2. Iron regulation of phytoplankton taxonomic variability and primary production. J Geophys Res 08:3231. doi:10.1029/2001JC000856

    Article  Google Scholar 

  • Arrigo KR, van Djiken G, Long M (2008a) Coastal Southern Ocean: a strong anthropogenic CO2 sink. Geophys Res Lett 35:L21602. doi:10.1029/2008GL035624

    Article  Google Scholar 

  • Arrigo KR, van Djiken G, Bushinsky S (2008b) Primary production in the Southern Ocean, 1997–2006. J Geophys Res 113:CO8004. doi:10.1029/20007JC004551

    Article  Google Scholar 

  • Blake RE, Duffy JE (2012) Changes in biodiversity and environmental stressors influence community structure of an experimental eelgrass Zostera marina system. Mar Ecol Prog Ser 470:41–54

    Article  Google Scholar 

  • Boyd PW, Abraham ER (2001) Iron-mediated changes in phytoplankton photosynthetic competence during SOIREE. Deep-Sea Res II 48:2529–2550

    Article  CAS  Google Scholar 

  • Boyd PW, Law CS, Hutchins DA, Abraham ER, Croot PL, Ellwood M, Frew RD, Hadfield M, Hall J, Handy S, Hare C, Higgins J, Hill P, Hunter KA, LeBlanc K, Maldonado MT, McKay RC, Mioni C, Oliver M, Pickmere S, Pinkerton M, Safi K, Sander S, Sanudo-Wilhelmy SA, Smith M, Strzepek R, Tovar-Sanchez A, Wilhelm SW (2005) Fe Cycle: attempting an iron biogeochemical budget from a mesoscale SF6 tracer experiment in unperturbed low iron waters. Glob Biogeochem Cycles. doi:10.1029/2005GB002494

    Google Scholar 

  • Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Wittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters—outcome of a scientific community-wide study. PLoS One 8:e63091. doi:10.1371/journal.pone.0063091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer TD, Cinner JE, Fisher R, Green A, Wilson SK (2012) Market access, population density, and socioeconomic development explain diversity and functional group biomass of coral reef fish assemblages. Glob Environ Change 22:399–406

    Article  Google Scholar 

  • Dennett MR, Mathot S, Caron DA, Smith WO Jr, Lonsdale D (2001) Abundance and distribution of phototrophic and heterotrophic nano- and microplankton in the southern Ross Sea. Deep-Sea Res II 48:4019–4038

    Article  Google Scholar 

  • DiTullio GR, Smith WO Jr (1996) Spatial patterns in phytoplankton biomass and pigment distributions in the Ross Sea. J Geophys Res 101:18467–18478

    Article  CAS  Google Scholar 

  • Eppley RW (1968) An incubation method for estimating the carbon content of phytoplankton in natural samples. Limnol Oceanogr 13:574–582

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Fung IY, Meyn SK, Tegen I, Doney SC, John JG, Bishop JKB (2000) Iron supply and demand in the upper ocean. Glob Biogeochem Cycles 14:281–295

    Article  CAS  Google Scholar 

  • Gallegos CL, Vant WN (1996) An incubation procedure for estimating carbon-to-chlorophyll ratios and growth-irradiance relationships of estuarine phytoplankton. Mar Ecol Prog Ser 138:275–291

    Article  Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Grace JB, Anderson TM, Olff H, Scheiner SM (2010) On the specification of structural equation models for ecological systems. Ecol Monogr 80:67–87

    Article  Google Scholar 

  • JGOFS (1996). Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. Report No. 19 of the Joint Global Ocean Flux Study, Scientific Committee on Oceanic Research, International Council on Scientific Unions, Intergovernmental Oceanographic Commission, Bergen, Norway

  • Jones RM, Smith WO Jr (2016) The influence of short-term events on the hydrographic and biological structure of the southwestern Ross Sea. J. Mar. Systems (in press)

  • Kaufman DE, Friedrichs MAM, Smith WO Jr, Queste BY, Heywood KJ (2014) Biogeochemical variability in the southern Ross Sea as observed by a glider deployment. Deep-Sea Res I 92:93–106

    Article  CAS  Google Scholar 

  • Kline RB (2015) Principles and Practice of Structural Equation Modeling. Guilford Press, New York

    Google Scholar 

  • Kropuenske LR, Mills MM, van Dijken GL, Bailey S, Robinson DH, Welschmeyer NA, Arrigo KR (2009) Photophysiology in two major Southern Ocean phytoplankton taxa: photoprotection in Phaeocystis antarctica and Fragilariopsis cylindrus. Limnol Oceanogr-Meth 54:1176–1196

    Article  CAS  Google Scholar 

  • Liu X, Smith WO Jr (2012) A statistical analysis of the controls on phytoplankton distribution in the Ross Sea, Antarctica. J Mar Syst 94:135–144

    Article  Google Scholar 

  • Mahowald NM, Baker AR, Bergametti G, Brooks N, Duce RA, Jickells TD, Kubilay N, Prospero JM, Tegen I (2005) Atmospheric global dust cycle and iron inputs to the ocean. Glob Biogeochem Cycles. doi:10.1029/2004gb002402

    Google Scholar 

  • Manizza M, Le Quére C, Watson AJ, Buitenhuis ET (2005) Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophys Res Lett 32:L05603. doi:10.1029/2004GL020778

    Article  Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990) Iron deficiency limits phytoplankton growth in Antarctic waters. Glob Biogeochem Cycles 4:5–12

    Article  CAS  Google Scholar 

  • McGillicuddy DM Jr, Sedwick PN, Dinniman MS, Arrigo KR, Bibby TS, Greenan BJW, Hofmann EE, Klinck JM, Smith WO Jr, Mack SL, Marsay CM, Sohst BH, van Dijken G (2015) Iron supply and demand in an Antarctic shelf system. Geophys Res Lett 42:8088–8097. doi:10.1002/2015GL065727

    Article  Google Scholar 

  • Mosby A, Smith WO Jr (2015) Phytoplankton growth rates in the Ross Sea, Antarctica. Aq Microb Ecol 74:157–171

    Article  Google Scholar 

  • Pugesek BH, Tomer A, von Eye A (2003) Structural equation modeling: applications in ecological and evolutionary biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sathyendranath S, Stuart V, Nair A, Oka K, Nakane T, Bouman H, Forget M-H, Maass H, Platt T (2009) Carbon-to-chlorophyll ratio and growth rate of phytoplankton in the sea. Mar Ecol Prog Ser 383:73–84

    Article  CAS  Google Scholar 

  • Sedwick PN, DiTullio GR (1997) Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys Res Lett 24:2515–2518

    Article  CAS  Google Scholar 

  • Sedwick PN, DiTullio GR, Mackey DJ (2000) Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J Geophys Res 105:11321–11326

    Article  CAS  Google Scholar 

  • Sedwick PN, Marsay CM, Sohst BM, Aguilar-Islas AM, Lohan MC, Long MC, Arrigo KR, Dunbar RB, Salto MA, Smith WO, DiTullio GR (2011) Early season depletion of dissolved iron in the Ross Sea polynya: implications for iron dynamics on the Antarctic continental shelf. J Geophys Res. doi:10.1029/2010JC006553

    Google Scholar 

  • Smith WO Jr, Comiso JC (2008) Influence of sea ice on primary production in the Southern Ocean: a satellite perspective. J Geophys Res. doi:10.1029/2007JC004251

    Google Scholar 

  • Smith WO Jr, Gordon LI (1997) Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys Res Lett 24:233–236

    Article  Google Scholar 

  • Smith WO Jr, Jones RM (2015) Vertical mixing, critical depths, and phytoplankton growth in the Ross Sea. ICES J Mar Science 72:1952–1960

    Article  Google Scholar 

  • Smith WO Jr, Nelson DM, DiTullio GR, Leventer AR (1996) Temporal and spatial patterns in the Ross Sea: phytoplankton biomass, elemental composition, productivity and growth rates. J Geophys Res 101:18455–18466

    Article  Google Scholar 

  • Smith WO Jr, Nelson DM, Mathot S (1999) Phytoplankton growth rates in the Ross Sea, Antarctica, determined by independent methods: temporal variations. J Plankton Res 21:1519–1536

    Article  Google Scholar 

  • Smith WO Jr, Marra J, Hiscock MR, Barber RT (2000) The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Res II 47:3119–3140

    Article  CAS  Google Scholar 

  • Smith WO Jr, Tozzi S, Long MC, Sedwick PN, Peloquin JA, Dunbar RB, Hutchins DA, Kolber Z, DiTullio GR (2013) Spatial and temporal variations in variable fluorescence in the Ross Sea (Antarctica): oceanographic correlates and bloom dynamics. Deep-Sea Res I 79:141–155

    Article  CAS  Google Scholar 

  • Smith WO Jr, Ainley DG, Arrigo KR, Dinniman MS (2014) The oceanography and ecology of the Ross Sea. Annu Rev Mar Sci 6:469–487

    Article  Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature 390:389–392

    Article  CAS  Google Scholar 

  • Tagliabue A, Bopp L, Aumont O (2009) Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry. Geophys Res Lett 36:L13601. doi:10.1029/2009gl038914

    Article  Google Scholar 

  • Thomson RE, Fine IV (2003) Estimating mixed layer depth from oceanic profile data. J Atmos Oceanic Technol 20:319–329

    Article  Google Scholar 

  • Thrush SF, Hewitt JE, Parkes S, Lohrer AM, Pilditch C, Woodin SA, Wethey DS, Chiantore M, Asnaghi V, De Juan S, Kraan C, Rodil I, Savage C, Van Colen C (2014) Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems. Ecol 95:1451–1457

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by National Science Foundation Grant ANT-0944254 to WOS. We thank all our PRISM colleagues for their assistance at sea, especially L. Delizo, H. Doan, S. Charles, E. Olson, and T. Ryan-Keogh for assisting in sample processing. This paper is Contribution No. 3549  of the Virginia Institute of Marine Science, College of William & Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walker O. Smith Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosby, A.F., Smith, W.O. Structural equation modeling of the influence of environmental factors on summer phytoplankton growth in the Ross Sea. Polar Biol 40, 291–299 (2017). https://doi.org/10.1007/s00300-016-1953-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1953-7

Keywords

Navigation