Skip to main content
Log in

Succession of picophytoplankton during the spring bloom 2012 in Disko Bay (West Greenland)—an unexpectedly low abundance of green algae

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Picoplankton are an ecologically important component of pelagic Arctic marine ecosystems that may be heavily impacted by climate change. In order to assess potential impacts of a changing environment on this group, it is necessary to develop a better understanding of their population dynamics and seasonal distribution. This study, carried out in Disko Bay, West Greenland, during spring 2012, demonstrates that fuco-algae (e.g. chrysophytes, cryptophytes, diatoms and pelagophytes) dominated the picophytoplankton during the spring bloom with minor contributions from haptophytes. In the post-bloom phase, fuco-algae were replaced by haptophytes. In contrast to total chlorophyll a, which varied dramatically over the study period, the picoplanktonic chlorophyll a remained relatively stable despite the variability in picophytoplankton community composition. Based on mostly molecular studies, a general picture has emerged from the literature that mamiellophytes (a group within the green algae) dominate Arctic picophytoplankton. Here, however, green algae were found to contribute with only about 10 % of the picoplanktonic chlorophyll a. We suggest here that differences in cell size may offer a plausible explanation for the contrast between results obtained from molecular studies and those obtained from pigment- and microscopy-based studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Aird D, Ross MG, Chen W-S et al (2011) Analyzing and minimizing PCR amplification bias in illumina sequencing libraries. Genome Biol 12:R18. doi:10.1186/gb-2011-12-2-r18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amacher JA, Baysinger CW, Neuer S (2011) The importance of organism density and co-occurring organisms in biases associated with molecular studies of marine protist diversity. J Plankton Res 33:1762–1766. doi:10.1093/plankt/fbr062

    Article  Google Scholar 

  • Balzano S, Marie D, Gourvil P, Vaulot D (2012) Composition of the summer photosynthetic pico and nanoplankton communities in the Beaufort Sea assessed by T-RFLP and sequences of the 18S rRNA gene from flow cytometry sorted samples. ISME J 6:1480–1498. doi:10.1038/ismej.2011.213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Speed TP (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 40:e72. doi:10.1093/nar/gks001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth BC, Horner RA (1997) Microalgae on the arctic ocean section, 1994: species abundance and biomass. Deep Res Part II Top Stud Oceanogr 44:1607–1622

    Article  Google Scholar 

  • Booth BC, Smith WO (1997) Autotrophic flagellates and diatoms in the northeast Water Polynya, Greenland: summer 1993. J Mar Syst 10:241–261

    Article  Google Scholar 

  • Derelle E, Ferraz C, Rombauts S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652. doi:10.1073/pnas.0604795103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara A, Hirawake T, Suzuki K et al (2014) Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences 11:1705–1716. doi:10.5194/bg-11-1705-2014

    Article  Google Scholar 

  • Gradinger R, Lenz J (1995) Seasonal occurrence of picocyanobacteria in the Greenland Sea and central Arctic Ocean. Polar Biol 15:447–452. doi:10.1007/BF00239722

    Article  Google Scholar 

  • Higgins H, Wright SW, Schlüter L (2011) Quantitative interpretation of chemotaxonomic pigment data. In: Roy S, Llewellyn CA, Egeland ES, Johnsen G (eds) Phytoplankt. Pigment. Charact. Chemotaxon. Appl, Oceanogr, p 890

    Google Scholar 

  • Hodal H, Kristiansen S (2008) The importance of small-celled phytoplankton in spring blooms at the marginal ice zone in the northern Barents Sea. Deep Res Part II Top Stud Oceanogr 55:2176–2185. doi:10.1016/j.dsr2.2008.05.012

    Article  CAS  Google Scholar 

  • Hodal H, Falk-Petersen S, Hop H et al (2011) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203. doi:10.1007/s00300-011-1053-7

    Article  Google Scholar 

  • Hou Y, Zhang H, Miranda L, Lin S (2010) Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS ONE 5:e9545. doi:10.1371/journal.pone.0009545

    Article  PubMed  PubMed Central  Google Scholar 

  • Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch für Hydrobiol 109:445–454

    CAS  Google Scholar 

  • Larsson U, Hagström Å (1982) Fractionated phytoplankton primary production, exudate release and bacterial production in a baltic eutrophication gradient. Mar Biol 67:57–70. doi:10.1007/BF00397095

    Article  Google Scholar 

  • Lett S, Paulsen ML, Larsen SS (2011) Marine eukaryote picophytoplankton in the waters around Disko Island (West Greenland): a first attempt to evaluate their relative contribution to total biomass and productivity. In: Daugbjerg N (ed) Arctic Biology Field Course July 2010, Qeqertarsuaq, Greenland. Department of Biology, Faculty of Science, University of Copenhagen, pp 52–87

  • Levinsen H, Nielsen T, Hansen B (2000) Annual succession of marine pelagic protozoans in Disko Bay, west Greenland, with emphasis on winter dynamics. Mar Ecol Prog Ser 206:119–134. doi:10.3354/meps206119

    Article  Google Scholar 

  • Li WKW (1998) Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr 43:1746–1753

    Article  Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539. doi:10.1126/science.1179798

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Probert I, Uitz J et al (2009) Extreme diversity in noncalcifying haptophytes explains a major pigment paradox in open oceans. Proc Natl Acad Sci USA 106:12803–12808. doi:10.1073/pnas.0905841106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovejoy C, Massana R, Pedrós-Alió C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095. doi:10.1128/aem.72.5.3085-3095.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovejoy C, Vincent WF, Bonilla S et al (2007) Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic Seas. J Phycol 43:78–89. doi:10.1111/j.1529-8817.2006.00310.x

    Article  CAS  Google Scholar 

  • Luo W, Li HR, Cai MH, He JF (2009) Diversity of microbial eukaryotes in Kongsfjorden, Svalbard. Hydrobiologia 636:233–248. doi:10.1007/s10750-009-9953-z

    Article  Google Scholar 

  • Mackey M, Mackey D, Higgins H, Wright SW (1996) CHEMTAX —a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283

    Article  CAS  Google Scholar 

  • Madsen SJ, Nielsen TG, Tervo OM, Söderkvist J (2008) Importance of feeding for egg production in Calanus finmarchicus and C. glacialis during the Arctic spring. Mar Ecol Prog Ser 353:177–190. doi:10.3354/meps07129

    Article  CAS  Google Scholar 

  • Magazzù G, Panella S, Decembrini F (1996) Seasonal variability of fractionated phytoplankton, biomass and primary production in the Straits of Magellan. J Mar Syst 9:249–267

    Article  Google Scholar 

  • Marie D, Shi XL, Rigaut-Jalabert F, Vaulot D (2010) Use of flow cytometric sorting to better assess the diversity of small photosynthetic eukaryotes in the english channel. FEMS Microbiol Ecol 72:165–178. doi:10.1111/j.1574-6941.2010.00842.x

    Article  CAS  PubMed  Google Scholar 

  • Marin B, Melkonian M (2010) Molecular phylogeny and classification of the Mamiellophyceae class. nov (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA operons. Protist 161:304–336. doi:10.1016/j.protis.2009.10.002

    Article  CAS  PubMed  Google Scholar 

  • McDowell DG, Burns NA, Parkes HC (1998) Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR. Nucleic Acids Res 26:3340–3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen TG, Hansen B (1995) Plankton community structure and carbon cycling on the western coast of Greenland during and after the sedimentation of a diatom bloom. Mar Ecol Prog Ser 125:239–257

    Article  CAS  Google Scholar 

  • Not F, Massana R, Latasa M et al (2005) Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol Oceanogr 50:1677–1686

    Article  CAS  Google Scholar 

  • Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093. doi:10.1371/journal.pone.0043093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potvin M, Lovejoy C (2009) PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries. J Eukaryot Microbiol 56:174–181. doi:10.1111/j.1550-7408.2008.00386.x

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing

  • Sherr EB, Sherr BF, Wheeler PA, Thompson K (2003) Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean. Deep Res Part I Oceanogr Res Pap 50:557–571. doi:10.1016/S0967-0637(03)00031-1

    Article  Google Scholar 

  • Smith JC, Platt T, Li WKW et al (1985) Arctic marine photoautotrophic picoplankton. Mar Ecol Prog Ser 20:207–220

    Article  CAS  Google Scholar 

  • Sørensen N, Daugbjerg N, Gabrielsen TM (2011) Molecular diversity and temporal variation of picoeukaryotes in two Arctic fjords, Svalbard. Polar Biol 35:519–533. doi:10.1007/s00300-011-1097-8

    Article  Google Scholar 

  • Sørensen N, Daugbjerg N, Richardson K (2013) Choice of pore size can introduce artefacts when filtering picoeukaryotes for molecular biodiversity studies. Microb Ecol 65:964–968. doi:10.1007/s00248-012-0174-z

    Article  PubMed  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542. doi:10.1093/bioinformatics/btl117

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Wakem M, Dijkman G et al (2009) A practical approach to RT-qPCR—publishing data that conform to the MIQE guidelines. Methods 50:S1–S5. doi:10.1016/j.ymeth.2010.01.005

    Article  Google Scholar 

  • Terrado R, Medrinal E, Dasilva C et al (2011) Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol 34:1901–1914. doi:10.1007/s00300-011-1039-5

    Article  Google Scholar 

  • Terrado R, Scarcella K, Thaler M et al (2012) Small phytoplankton in Arctic seas: vulnerability to climate change. Biodiversity 14:1–17. doi:10.1080/14888386.2012.704839

    Google Scholar 

  • Tummers B (2006) DataThief

  • Van der Staay SYM, van der Staay GWM, Guillou L et al (2000) Abundance and diversity of prymnesiophytes in the picoplankton community from the equatorial Pacific Ocean inferred from 18S rDNA sequences. Limnol Oceanogr 45:98–109

    Article  Google Scholar 

  • Vaulot D, Eikrem W, Viprey M, Moreau H (2008) The diversity of small eukaryotic phytoplankton (≤3 µm) in marine ecosystems. FEMS Microbiol Rev 32:795–820. doi:10.1111/j.1574-6976.2008.00121.x

    Article  CAS  PubMed  Google Scholar 

  • Von Quillfeldt CH (2001) Identification of some easily confused common diatom species in Arctic spring blooms. Bot Mar 44:375–389

    Google Scholar 

  • Wassmann P, Ratkova T, Andreassen I et al (1999) Spring bloom development in the marginal ice zone and the central Barents Sea. Mar Ecol 20:321–346. doi:10.1046/j.1439-0485.1999.2034081.x

    Article  Google Scholar 

  • Wright SW, Ishikawa A, Marchant HJ et al (2009) Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797–808. doi:10.1007/s00300-009-0582-9

    Article  Google Scholar 

  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Res 10:221–231

    CAS  Google Scholar 

  • Zhu F, Massana R, Not F et al (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol 52:79–92. doi:10.1016/j.femsec.2004.10.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Carlsberg Foundation, Greenland Climate Research Center (Grant Number 6505), Selskabet for Arktisk Forskning og Teknologi, Knud Højgårds Fond, the Oticon Foundation, the Danish Council for Strategic Research (North Atlantic–Arctic coupling in a changing climate: impacts on ocean circulation, carbon cycling and sea-ice, grant number 10-093003/DSF], Center for Macroecology, Evolution and Climate supported by the Danish National Research Foundation and Deptartment of Biology (University of Copenhagen). Fieldwork took place at Arctic Station (Qerqertarsuaq, University of Copenhagen), and the authors thank Ole Stecher and the crew of RV Porsild for help during sampling. Also thanks to Abel Brandt and Johannes Mølgaard, for their hard work and knowledge on local conditions. Berit Langkilde Møller is thanked for performing the HPLC analysis, Simon Wright for supplying the CHEMTAX software and Louise Schlüter for assistance using CHEMTAX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaj Sørensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 127 kb)

Supplementary material 2 (XLS 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sørensen, N., Daugbjerg, N., Richardson, K. et al. Succession of picophytoplankton during the spring bloom 2012 in Disko Bay (West Greenland)—an unexpectedly low abundance of green algae. Polar Biol 40, 463–469 (2017). https://doi.org/10.1007/s00300-016-1952-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-016-1952-8

Keywords

Navigation