Skip to main content

Advertisement

Log in

A transcriptomic analysis of the response of the arctic pteropod Limacina helicina to carbon dioxide-driven seawater acidification

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Ocean acidification from the uptake of anthropogenic carbon dioxide (CO2) is regarded as a critical threat particularly to marine calcifying organisms. The arctic pteropod Limacina helicina may be one of the first polar organisms that are expected to display early sensitivity to ocean acidification, but a molecular approach as a foundation for understanding the effect of ocean acidification on this pteropod has rarely been reported. In this study, we examined the sublethal effects of CO2-driven seawater acidification at the transcriptome level in L. helicina. cDNAs, treated under control (pH 8.2), high-CO2 (pH 7.5), and extreme-CO2 (pH 6.5) conditions, generated a total of 31,999,474 reads, comprising a total of 2,271,962,654 bp, using the Illumina platform. De novo assembly yielded 53,121 transcripts comprising 31.79 Mbp. Among the upregulated genes, 346 (0.7 %) and 655 (1.2 %) genes responded to extreme-level CO2 (pH 6.5) and high-level CO2 (pH 7.5), respectively. Also, 76 (0.1 %) transcripts were commonly upregulated in both conditions. Among the downregulated genes, 690 (1.3 %) and 739 (1.4 %) genes were in response to extreme-level CO2 and high-level CO2, respectively. Also, 270 downregulated genes (0.5 %) were affected in both acidic stress conditions. Moreover, 504 transcripts (1 %) of biomineralization-related genes were identified; 16 of these genes showed differential expression in response to acidified seawater. The dataset provides the first comprehensive overview of changes in transcript levels in the arctic pteropod L. helicina in response to increased CO2, emphasizing the potential impact of future environmental change and ocean acidification on Arctic species with external calcified structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bankowska A, Gacko M, Chyczewska E, Worowska A (1997) Biological and diagnostic role of cathepsin D. Rocz Akad Med Bialymst 42(Suppl 1):79–85

    PubMed  Google Scholar 

  • Bednarsek N, Feely RA, Reum JC, Peterson B, Menkel J, Alin SR, Hales B (2014) Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proc Biol Sci 281:20140123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Øxnevad S (2006) Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere 62:681–687

    Article  CAS  PubMed  Google Scholar 

  • Berner RA, Honjo S (1981) Pelagic sedimentation of aragonite: its geochemical significance. Science 211:940–942

    Article  CAS  PubMed  Google Scholar 

  • Busch DS, Maher M, Thibodeau P, McElhany P (2014) Shell condition and survival of puget sound pteropods are impaired by ocean acidification conditions. PLoS One 9:e105884

    Article  PubMed Central  PubMed  Google Scholar 

  • Carreiro-Silva M, Cerqueira T, Godinho A, Caetano M, Santos R, Bettencourt R (2014) Molecular mechanisms underlying the physiological responses of the cold-water coral Desmophyllum dianthus to ocean acidification. Coral Reefs 33:465–476

    Article  Google Scholar 

  • Collier R, Dymond J, Honjo S, Manganini S, Francois R, Dunbar R (2000) The vertical flux of biogenic and lithogenic material in the Ross Sea: moored sediment trap observations 1996–1998. Deep Sea Res Part 2 Top Stud Oceanogr 47:3491–3520

    Article  CAS  Google Scholar 

  • Comeau S, Gorsky G, Jeffree R, Teyssie JL, Gattuso J-P (2009) Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina). Biogeosciences 6:1877–1882

    Article  CAS  Google Scholar 

  • Comeau S, Jeffree R, Teyssie JL, Gattuso JP (2010) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One 5:e11362

    Article  PubMed Central  PubMed  Google Scholar 

  • Comeau S, Gattuso JP, Nisumaa AM, Orr J (2012) Impact of aragonite saturation state changes on migratory pteropods. Proc Biol Sci 279:732–738

    Article  PubMed Central  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Conover RJ, Lalli CM (1972) Feeding and growth in Clione limacina (Phipps), a pteropod mollusc. J Exp Mar Biol Ecol 9:279–302

    Article  Google Scholar 

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Mar Sci 1:169–192

    Article  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dupont S, Havenhand J, Thorndyke W, Peck LS, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294

    Article  CAS  Google Scholar 

  • Evans TG, Chan F, Menge BA, Hofmann GE (2013) Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Mol Ecol 22:1609–1625

    Article  CAS  PubMed  Google Scholar 

  • Fabry VJ, Seibel BA, Freely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432

    Article  CAS  Google Scholar 

  • Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 6:e21860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  PubMed  Google Scholar 

  • Fu FX, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Gannefors C, Böer M, Kattner G, Graeve M, Eiane K, Gulliksen B, Hop H, Falk-Petersen S (2005) The Arctic sea butterfly Limacina helicina: lipids and life strategy. Mar Biol 147:169–177

    Article  Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier R (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46

    Article  Google Scholar 

  • Gazeau F, Quiblier C, Jansen JM, Gattuso JP, Middelburg JJ, Heip CH (2007) Impact of elevated CO2 on shellfish calcification. Geophys Res Lett 34:L07603

    Article  Google Scholar 

  • Gilmer RW (1990) In situ observations of feeding behavior of thecosome pteropod molluscs. Am Malacol Bull 8:53–59

    Google Scholar 

  • Gilmer R, Harbison G (1986) Morphology and field behavior of pteropod molluscs: feeding methods in the families Cavoliniidae, Limacinidae and Peraclididae (Gastropoda: Thecosomata). Mar Biol 91:47–57

    Article  Google Scholar 

  • Gilmer R, Harbison G (1991) Diet of Limacina helicina(Gastropoda: Thecosomata) in Arctic waters in midsummer. Mar Ecol Prog Ser 77:125–134

    Article  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hall A (2009) The cytoskeleton and cancer. Cancer Metastasis Rev 28:5–14

    Article  PubMed  Google Scholar 

  • Hamner WM, Madin LP, Alldredge AL, Gilmer RW, Hamner PP (1975) Underwater observations of gelatinous zooplankton: sampling problems, feeding biology, and behavior. Limnol Oceanogr 20:907–917

    Article  Google Scholar 

  • Harris JO, Maguire GB, Edwards SJ, Hindrum SM (1999) Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for juvenile greenlip abalone, Haliotis laevigata Donovan and blacklip abalone, Haliotis rubra Leach. J Shellfish Res 18:611–619

    Google Scholar 

  • Hauton C, Tyrrell T, Williams J (2009) The subtle effects of sea water acidification on the amphipod Gammarus locusta. Biogeosciences 6:1479–1489

    Article  CAS  Google Scholar 

  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, Buckley KM, Brockton V, Nair SV, Berney K, Fugmann SD, Anderson MK, Pancer Z, Cameron RA, Smith LC, Rast JP (2006) The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol 300:349–365

    Article  CAS  PubMed  Google Scholar 

  • Hunt B, Pakhomov E, Hosie G, Siegel V, Ward P, Bernard K (2008) Pteropods in southern ocean ecosystems. Prog Oceanogr 78:193–221

    Article  Google Scholar 

  • Iwanaga S, Lee B-L (2005) Recent advances in the innate immunity of invertebrate animals. BMB Rep 38:128–150

    CAS  Google Scholar 

  • Jiang JL, Wang GZ, Mao MG, Wang KJ, Li SJ, Zeng CS (2013) Differential gene expression profile of the calanoid copepod, Pseudodiaptomus annandalei, in response to nickel exposure. Comp Biochem Physiol C Toxicol Pharmacol 157:203–211

    Article  CAS  PubMed  Google Scholar 

  • Kaniewska P, Campbell PR, Kline DI, Rodriguez-Lanetty M, Miller DJ, Dove S, Hoegh-Guldberg O (2012) Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7:e34659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Karnovsky NJ, Hobson KA, Iverson S, Hunt G (2008) Seasonal changes in diets of seabirds in the North Water Polynya: a multiple-indicator approach. Mar Ecol Prog Ser 357:291

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896

    Article  PubMed Central  PubMed  Google Scholar 

  • Kurihara H, Shirayama Y (2004) Effects of increased atmospheric CO2 on sea urchin early development. Mar Ecol Prog Ser 274:161–169

    Article  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98

    Article  CAS  Google Scholar 

  • Lalli CM, Gilmer RW (1989) Pelagic snails: the biology of holoplanktonic gastropod mollusks. Stanford University Press, Stanford

    Google Scholar 

  • Langdon C, Atkinson M (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07

    Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Larson RJ, Harbison GR (1989) Source and fate of lipids in polar gelatinous zooplankton. Arctic 42:339–346

    Article  Google Scholar 

  • Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics 29:1035–1043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lischka S, Büdenbender J, Boxhammer T, Riebesell U (2011) Impact of ocean acidification and elevated temperatures on early juveniles of the polar shelled pteropod Limacina helicina: mortality, shell degradation, and shell growth. Biogeosciences 8:919–932

    Article  CAS  Google Scholar 

  • Liu R-M (2008) Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal 10:303–320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livingston BT, Killian CE, Wilt F, Cameron A, Landrum MJ, Ermolaeva O, Sapojnikov V, Maglott DR, Buchanan AM, Ettensohn CA (2006) A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus. Dev Biol 300:335–348

    Article  CAS  PubMed  Google Scholar 

  • McNeil BI, Matear RJ (2008) Southern Ocean acidification: a tipping point at 450-ppm atmospheric CO2. Proc Natl Acad Sci USA 105:18860–18864

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO (2005) Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser 293:109–118

    Article  Google Scholar 

  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54:89–96

    Article  CAS  PubMed  Google Scholar 

  • Mizutani K, Toyoda M, Otake Y, Yoshioka S, Takahashi N, Mikami B (2012) Structural and functional characterization of recombinant medaka fish alpha-amylase expressed in yeast Pichia pastoris. Biochim Biophys Acta 1824:954–962

    Article  CAS  PubMed  Google Scholar 

  • Moy AD, Howard WR, Bray SG, Trull TW (2009) Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat Geosci 2:276–280

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005a) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005b) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Pörtner H-O, Reipschläger A, Heisler N (1998) Acid-base regulation, metabolism and energetics in Sipunculus nudus as a function of ambient carbon dioxide level. J Exp Biol 201:43–55

    PubMed  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Biol Ecol 400:278–287

    Article  CAS  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reipschläger A, Pörtner H (1996) Metabolic depression during environmental stress: the role of extracellular versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807

    Google Scholar 

  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  CAS  PubMed  Google Scholar 

  • Roberts D, Howard WR, Roberts JL, Bray SG, Moy AD, Trull TW, Hopcroft RR (2014) Diverse trends in shell weight of three Southern Ocean pteropod taxa collected with Polar Frontal Zone sediment traps from 1997 to 2007. Polar Biol 37:1445–1458

    Article  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Rokitta SD, John U, Rost B (2012) Ocean acidification affects redox-balance and ion-homeostasis in the life-cycle stages of Emiliania huxleyi. PLoS One 7:e52212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci USA 105:20776–20780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rothberg JM, Leamon JH (2008) The development and impact of 454 sequencing. Nat Biotechnol 26:1117–1124

    Article  CAS  PubMed  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Sato-Okoshi W, Okoshi K, Sasaki H, Akiha F (2010) Shell structure of two polar pelagic molluscs, Arctic Limacina helicina and Antarctic Limacina helicina antarctica forma antarctica. Polar Biol 33:1577–1583

    Article  Google Scholar 

  • Seibel BA, Maas AE, Dierssen HM (2012) Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina antarctica. PLoS One 7:e30464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shirayama Y, Thornton H (2005) Effect of increased atmospheric CO2 on shallow water marine benthos. J Geophys Res 110:C09S08

    Google Scholar 

  • Simkiss K, Wilbur K (1989) Biomineralization: cell biology and mineral deposition. Academic Press, San Diego

    Google Scholar 

  • Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (eds) (2007) Climate change 2007 - The physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 pp

  • Steinacher M, Joos F, Frolicher T, Plattner G, Doney S (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594

    Article  CAS  PubMed  Google Scholar 

  • Van de Waal DB, John U, Ziveri P, Reichart GJ, Hoins M, Sluijs A, Rost B (2013) Ocean acidification reduces growth and calcification in a marine dinoflagellate. PLoS One 8:e65987

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe Y, Yamaguchi A, Ishida H, Harimoto T, Suzuki S, Sekido Y, Ikeda T, Shirayama Y, Mac Takahashi M, Ohsumi T (2006) Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. J Oceanogr 62:185–196

    Article  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Young Deuk Han for field and laboratory assistance. This work was supported by the Grant from Korea Polar Research Institute (PE15070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun Park, Seung Chul Shin or Sung Gu Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_1

Differentially expressed gene profile (PDF 424 kb)

ESM_2

All enriched GO terms (PDF 66 kb)

ESM_3

List of Biomineralization-related genes in Limacina helicina (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, H.Y., Lee, J.H., Han, S.J. et al. A transcriptomic analysis of the response of the arctic pteropod Limacina helicina to carbon dioxide-driven seawater acidification. Polar Biol 38, 1727–1740 (2015). https://doi.org/10.1007/s00300-015-1738-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1738-4

Keywords

Navigation