Skip to main content
Log in

Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The first CO2 exposure experiments on several species of pelagic copepods inhabiting surface and deep layers in the western North Pacific were conducted. Living organisms were collected from two layers between the surface and 1,500 m between latitudes of 11 and 44°N, and they were exposed aboard ship to various pCO2 up to about 98,000 μatm. Mortality of copepods from both shallow and deep layers in subarctic to subtropical regions increased with increasing pCO2 and exposure time. Deep-living copepods showed higher tolerance to pCO2 than shallow-living copepods. Furthermore, deep-living copepods from subarctic and transitional regions had higher tolerances than the subtropical copepods. The higher tolerances of the deep-living copepods from subarctic and transitional regions may be due to the adaptation to the natural pCO2 conditions in the subarctic ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auerbach, D. I., Caulfield, J. A., Adams, E. E. and Herzog, H. J. (1997): Impacts of ocean CO2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ. Mode. Assess., 2, 333–343.

    Google Scholar 

  • Barry, J. P., K. R. Buck, C. F. Lover, L. Kuhnz, P. J. Whaling, E. T. Peltzer, P. Walz and P. G. Brewer (2004): Effects of direct ocean CO2 injection on deep-sea meiofauna. J. Oceanogr., 60, 759–766.

    Article  Google Scholar 

  • Brodsky, K. A. (1950): Calanoida of the far eastern seas and polar basin of the USSR. Israel Program for Scientific Translations, Jerusalem, 1967, 1–440.

  • Carman, K. R., D. Thistle, J. W. Fleeger and J. P. Brewer (2004): Influence of introduced CO2 on deep-sea metazoan meiofauna. J. Oceanogr., 60, 767–772.

    Article  Google Scholar 

  • Chihara, M. and M. Murano (eds.) (1997): An Illustrated Guide to Marine Plankton in Japan. Tokai University Press, Tokyo, 1574 pp.

    Google Scholar 

  • Drange, H., G. Alendal and O. M. Johannessen (2001): Ocean release of fossil fuel CO2: A case study. Geophys. Res. Lett., 28, 2637–2640.

    Article  Google Scholar 

  • Handa, N. and T. Ohsumi (eds.) (1995): Direct Ocean Disposal of Carbon Dioxide. TERRAPUB, Tokyo, 274 pp.

    Google Scholar 

  • Haugan, P. M. and H. Drange (1992): Sequestration of CO2 in the deep ocean by shallow injection. Nature, 357, 318–320.

    Article  Google Scholar 

  • Herzog, H. J. and J. Edmond (1994): Disposing of CO2 in the Ocean. Spec. Publ.-R. Soc. Chem., 153, 329–337.

    Google Scholar 

  • Hoffert, M. I., Y.-C. Wey, A. J. Callegari and W. S. Broecker (1979): Atmospheric response to deep-sea injections of fossil-fuel carbon dioxide. Climatic Change, 2, 53–68.

    Article  Google Scholar 

  • Houghton, J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson (eds.) (2001): Climate Change 2001: The Scientific Basis. Press Syndicate of the University of Cambridge, Cambridge, 881 pp.

    Google Scholar 

  • Ishida, H., Y. Watanabe, T. Fukuhara, S. Kaneko, K. Fukasawa and Y. Shirayama (2005): In situ enclosure experiment using a benthic chamber system to assess the effect of high concentration of CO2 on deep-sea benthic communities. J. Oceanogr., 61, 835–843.

    Article  Google Scholar 

  • Ishimatsu, A., T. Kikkawa, M. Hayashi, K. Lee and J. Kita (2004): Effects of CO2 on marine fish: larvae and adults. J. Oceanogr., 60, 731–741.

    Article  Google Scholar 

  • Ishizaka, J. (1999): Biological impacts: structure of marine ecosystem and impact assessment. p. 8–14. In Proceedings of the 2nd International Symposium on Ocean Sequestration of Carbon Dioxide, ed. by H. Matsukawa, New Energy and Industrial Technology Development Organization, Tokyo.

    Google Scholar 

  • Kikkawa, T., A. Ishimatsu and J. Kita (2003): Acute CO2 tolerance during the early developmental stages of four marine teleosts. Environ. Toxicol., 18, 375–382.

    Article  Google Scholar 

  • Kikkawa, T. A., J. Kita and A. Ishimatsu (2004): Comparison of the lethal effect of CO2 and acidification on red sea bream (Pagrus major) during the early developmental stages. Mar. Pollut. Bull., 48, 108–110.

    Google Scholar 

  • Kobari, T. and T. Ikeda (1999): Vertical distribution, population structure and life cycle of Neocalanus cristatus (Crustacea: Copepoda) in the Oyashio region, with notes on its regional variations. Mar. Biol., 134, 683–696.

    Article  Google Scholar 

  • Koppelmann, R. and H. Weikert (1992): Full-depth zooplankton profiles over the deep bathyal of the NE Atlantic. Mar. Ecol. Prog. Ser., 82, 263–272.

    Google Scholar 

  • Kurihara, H., S. Shimode and Y. Shirayama (2004): Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J. Oceanogr., 60, 743–750.

    Article  Google Scholar 

  • Lackner, L. S. (2003): A guide to CO2 sequestration. Science, 300, 1677–1678.

    Article  Google Scholar 

  • Lewis, E. and D. Wallace (1997): Program Developed for CO 2 System Calculations. Brookhaven National Laboratory, New York.

    Google Scholar 

  • Macleod, J. C. and E. Pessah (1973): Temperature effects on mercury accumulation, toxicity, and metabolic rate in rainbow trout (Salmo gairdneri). J. Fish. Res. Board. Can., 30, 485–492.

    Google Scholar 

  • Mauchline, J. (1998): The Biology of Calanoid Copepods. Advances in Marine Biology Volume 53. Academic Press, San Diego, 710 pp.

    Google Scholar 

  • Millero, F. J. (1996): Chemical Oceanography. 2nd ed., CRC Press, Boca Raton, 469 pp.

    Google Scholar 

  • Nagata, T., H. Fukuda, R. Fukuda and I. Koike (2000): Bacterioplankton distribution and production in deep Pacific waters: Large-scale geographic variations and possible coupling with sinking particle fluxes. Limnol. Oceanogr., 45, 426–435.

    Google Scholar 

  • Omori, M., C. P. Norman and T. Ikeda (1998): Oceanic disposal of CO2: potential effects on deep-sea plankton and micronekton—a review. Plankton Biol. Ecol., 45, 87–99.

    Google Scholar 

  • Ormerod, B. and Angel, M. (eds.) (1996): Ocean Storage of Carbon Dioxide. Environmental Impact. IEA Greenhouse Gas R&D Programme, Cheltenham, U.K., 131 pp.

    Google Scholar 

  • Ozaki, M. (1997): CO2 injection and dispersion in mid-ocean depth by moving ship. Waste Manage., 17, 369–373.

    Google Scholar 

  • Parsons, T. R., M. Takahashi and B. Hargrave (1983): Biological Oceanographic Processes. 3rd ed., Pergamon Press, Oxford, 330 pp.

    Google Scholar 

  • Pörtner, H. O., M. Langenbuch and A. Reipschläger (2004): Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr., 60, 705–718.

    Article  Google Scholar 

  • Randall, D., W. Burggren and K. French (1997): Animal Physiology: Mechanisms and Adaptations. W. H. Freeman and Company, New York, 727 pp.

    Google Scholar 

  • Raymont, J. E. G. (1983): Plankton and Productivity in the Oceans. 2nd edition volume 2 Zooplankton. Pergamon Press Ltd., Oxford, 824 pp.

    Google Scholar 

  • Riebesell, U. (2004): Effects of CO2 enrichment on marine phytoplankton. J. Oceanogr., 60, 719–729.

    Article  Google Scholar 

  • Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe and F. M. M. Morel (2000): Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364–367.

    Google Scholar 

  • Sakuma, A. (1964): Bioassay: Design and Analysis. University of Tokyo Press, Tokyo, 309 pp. (in Japanese).

    Google Scholar 

  • Sato, T. and K. Sato (2002): Numerical prediction of the dilution process and its biological impacts in CO2 ocean sequestration. J. Mar. Sci. Tech., 6, 169–180.

    Google Scholar 

  • Seibel, B. A. and P. J. Walsh (2001): Potential impacts of CO2 injection on deep-sea biota. Science, 294, 319–320.

    Article  Google Scholar 

  • Seibel, B. A., E. V. Thuesen, J. J. Childress and L. A. Gorodezky (1997): Decline in pelagic cephalopod metabolism with habitat depth reflects differences in locomotory efficiency. Biol. Bull., 192, 262–278.

    Google Scholar 

  • Sewell, R. B. S. (1948): The free-swimming planktonic Copepoda. Geographical distribution. Scientific Reports of the John Murray Expedition 1933–34, Zoology, 8, 317–592.

    Google Scholar 

  • Shirayama, Y. (1997): Biodiversity and biological impact of ocean disposal of carbon dioxide. Waste Manage., 17, 381–384.

    Google Scholar 

  • Stephan, C. E. (1977): Methods for calculating an LC50. In Aquatic Toxicology and Hazard Evaluation, ed. by F. I. Mayer and J. L. Hamelink, ASTM STP, 634, 65–84, American Society for Testing and Materials.

  • Takeuchi, K., Y. Fujioka, Y. Kaswasaki and Y. Shirayama (1997): Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energy Conver. Manage., 38, S337–S341.

    Google Scholar 

  • Tamburri, M. N., E. T. Peltzer, G. E. Friederich, I. Aya, K. Yamane and P. G. Brewer (2000): A field study of the effects of CO2 ocean disposal on mobile deep-sea animals. Mar. Chem., 72, 95–101.

    Article  Google Scholar 

  • Terazaki, M. and C. Tomatsu (1997): A vertical multiple opening and closing plankton sampler. J. Adv. Mar. Sci. Tech. Soc., 3, 127–132.

    Google Scholar 

  • Vinogradov, M. E. (1968): Vertical Distribution of the Oceanic Zooplankton. Nauka, Moskow, 320 pp.

    Google Scholar 

  • Wakabayashi, M. (2003): Chemical Materials and Ecological Toxicity. Maruzen, Tokyo, 457 pp. (in Japanese).

    Google Scholar 

  • Yamada, Y. and T. Ikeda (1999): Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biol. Ecol., 46, 62–67.

    Google Scholar 

  • Yamaguchi, A., J. Ishizaka and Y. Watanabe (2000): Vertical distribution of plankton community in the western North Pacific Ocean (WEST-COSMIC). Bull. Plankton Soc. Japan, 47, 144–156.

    Google Scholar 

  • Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, K. Furusawa, S. Suzuki, J. Ishizaka, T. Ikeda and M. M. Takahashi (2002): Structure and size distribution of plankton communities down to the greater depths in the western North Pacific Ocean. Deep-Sea Res. II, 49, 5513–5529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Yamaguchi, A., Ishida, H. et al. Lethality of increasing CO2 levels on deep-sea copepods in the western North Pacific. J Oceanogr 62, 185–196 (2006). https://doi.org/10.1007/s10872-006-0043-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0043-9

Keywords

Navigation