Skip to main content

Advertisement

Log in

Picoplankton and nanoplankton variability in an Antarctic shallow coastal zone (Admiralty Bay) during the austral summer of 2010/2011

  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The distribution and variability of picoplankton and nanoplankton in Admiralty Bay (King George Island, South Shetland Islands, Antarctica) were studied by investigation of five sampling sites during the austral summer of 2010/2011. After a relatively warm winter, the water temperature in the early summer (>0.02 °C) was higher than is normal in December. The spatial–temporal variability of salinity was low, whereas water temperature and chlorophyll a increased significantly (p < 0.05) toward late summer. Nitrite and phosphate concentrations increased whereas nitrate and silicate decreased during the summer. Picoplankton increased by late summer and was dominated by heterotrophs (>96 %), with abundance and biomass tenfold (~109 cells L−1) and twofold (~60 µg C L−1) higher, respectively, than were observed in previous studies. In contrast, nanoplankton was dominated by photoautotrophs (>60 %), and values were highest in the early summer, with cell numbers (~106 cells L−1) and biomass (~90 µg C L−1) a factor of two lower than those found in a previous study. Temperature changes, inputs from ice melting, and grazing relationships between planktonic components seemed to have crucially important effects on the distribution patterns of these pico and nanoplankton communities. We suggest that additional study must be performed to develop a better understanding of abiotic and biotic factors that affect the abundance, biomass, and production of plankton smaller than 20 µm, their place in the microbial food web and the possible consequences of environmental changes on higher trophic levels in such Antarctic coastal environments as Admiralty Bay ASMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agawin NSR, Agustí S, Duarte CM (2002) Abundance of Antarctic picophytoplankton and their response to light and nutrient manipulation. Aquat Microb Ecol 29:161–172

    Article  Google Scholar 

  • ATCPs Antarctic Treaty Consultative Parties (1996) A proposal prepared by Brazil and Poland, in coordination with Ecuador and Peru, that Admiralty Bay, King George Island (South Shetland Island) be designated as an Antarctic Specially Managed Area (ASMA). Twentieth Antarctic Treaty Consultative Meeting, Utrecht, Netherlands. May 1996

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water- column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Azam F, Smith DC, Hollibaugh JT (1991) The role of the microbial loop in Antarctic pelagic ecosystems. Polar Res 10:239–243

    Article  Google Scholar 

  • Barrera-Alba JJ, Vanzan M, Tenório MMB, Tenenbaum DR (2012). Plankton structure of shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula (WAP) during early summer/2010: pico, ultra and microplankton and chlorophyll biomass. INCT-APA Annual Activity Report. doi:10.4322/apa.2014.071

  • Becquevort S, Dumont I, Tison JL, Lannuzel D, Sauvée ML, Chou L, Schoemann V (2009) Biogeochemistry and microbial community composition in sea ice and underlying seawater off East Antarctica during early spring. Polar Biol 32:879–895

    Article  Google Scholar 

  • Bjørnsen PK, Kuparinen J (1991) Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Mar Ecol Prog Ser 71:185–194

    Article  Google Scholar 

  • Blain S, Tréguer P, Belviso S, Bucciarelli E, Denis M, Desabre S, Fiala M, Jézéquel VM, Févre JL, Mayzaud P, Marty JC, Razouls S (2001) A biogeochemical study of the island mass effect in the context of the iron hypothesis: Kerguelen Islands, Southern Ocean. Deep Sea Res I 48:163–187

    Article  CAS  Google Scholar 

  • Boyd PW (2002) A review of: environmental factors controlling phytoplankton processes in the Southern Ocean. J Phycol 38:844–861

    Article  Google Scholar 

  • Brandini FP (1993) Phytoplankton biomass in an Antarctic coastal environment during stable water conditions–implications for the iron limitation theory. Mar Ecol Prog Ser 93:267–275

    Article  Google Scholar 

  • Brandini FP, Rebello J (1994) Wind field effect on hydrography and Chlorophyll dynamics in the coastal pelagial of Admiralty Bay, King George Island, Antarctica. Antarct Sci 6:433–442

    Article  Google Scholar 

  • Bratbak G, Dundas I (1984) Bacterial dry matter content and biomass estimations. Appl Environ Microb 48:755–757

    CAS  Google Scholar 

  • Caron DA, Dam HG, Kremer P, Lessard EJ, Madin LP, Malone TC, Napp JM, Peele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep Sea Res I 42:943–972

    Article  CAS  Google Scholar 

  • Caron DA, Lonsdale DJ, Dennett MR (1999) Bacterivory and herbivory play key roles in the fate of Ross Sea production. Antarct J US 32:81–83

    Google Scholar 

  • Cascaes MJ, Barbosa ACRA, Freitas FS, Colabuono FI, Silva J, Patire VF, Senatore DB, Dias PS, Cipro CVZ, Taniguchi S, Bícego MC, Montone RC, Weber RR (2012) Temperature, salinity, pH, dissolved oxygen and nutrient variations at five stations on the surface waters of Admiralty Bay, King George Island, Antarctica, during the summers from 2009 to 2012. INCT-APA Annual Activity Report. doi:10.4322/apa.2014.070

  • Church MJ, DeLong EF, Ducklow HW, Karner MB, Preston CM, Karl DM (2003) Abundance and distribution of planktonic Archaea and Bacteria in the waters west of the Antarctic Peninsula. Limnol Oceanogr 48:1893–1902

    Article  Google Scholar 

  • Clarke A, Leakey RJG (1996) The seasonal cycle of phytoplankton, macronutrients, and the microbial community in a nearshore Antarctic marine ecosystem. Limnol Oceanogr 41:1281–1294

    Article  CAS  Google Scholar 

  • Cornejo-Donoso J, Antezana T (2008) Preliminary trophic model of the Antarctic Península Ecosystem (Sub-area CCAMLR 48.1). Ecol Model 218:1–17

    Article  Google Scholar 

  • CPTEC (2015) Brazilian Antarctic Program. Centro de Previsão de Tempo e Estudos Climáticos. http://www.cptec.inpe.br/antartica. Accessed 03 Feb 2015

  • Delille D (1993) Seasonal changes in the abundance and composition of marine heterotrophic bacterial communities in an Antarctic coastal area. Polar Biol 13:463–470

    Article  Google Scholar 

  • Delille D (2004) Abundance and function of bacteria in the Southern Ocean. Cell Mol Biol 50:543–551

    CAS  PubMed  Google Scholar 

  • DeLong EF, Wu KY, Prézelin BB, Jovine RVM (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697

    Article  CAS  PubMed  Google Scholar 

  • Dennett MR, Caron DA, Murzov SA, Polikarpov IG, Gavrilova NA, Georgieva LV, Kuzmenko LV (1999) Abundance and biomass of nano- and microplankton during the 1995 Northeast Monsoon and Spring Intermonsoon in the Arabian Sea. Deep Sea Res II 46:1691–1717

    Article  Google Scholar 

  • Dennett MR, Mathot S, Caron DA, Smith WO Jr, Lonsdale DJ (2001) Abundance and distribution of phototrophic and heterotrophic nano- and microplankton in the southern Ross Sea. Deep Sea Res II 48:4019–4037

    Article  CAS  Google Scholar 

  • Detmer AE, Bathmann UV (1997) Distribution patterns of autotrophic pico- and nanoplankton and their relative contribution to algal biomass during spring in the Atlantic sector of the Southern Ocean. Deep Sea Res II 44:299–320

    Article  CAS  Google Scholar 

  • DHN (2014) Diretoria de Hidrografia e Navegação http://www.mar.mil.br/dhn/chm/box-previsao-mare/tabuas/. Accessed 03 Oct 2014

  • Donachie SP (1996) A seasonal study of marine bacteria in Admiralty Bay (Antarctica). Proc NIPR Symp Polar Biol 9:1–124

    Google Scholar 

  • Doolittle DF, Li WKW, Wood AM (2008) Wintertime abundance of picoplankton in the Atlantic sector of the Southern Ocean. Nova Hedwig 133:147–160

    Google Scholar 

  • Ducklow HW, Myers KMS, Erickson M, Ghiglione JF, Murray AE (2011) Response of a summertime Antarctic marine bacterial community to glucose and ammonium enrichment. Aquat Microb Ecol 64:205–220

    Article  Google Scholar 

  • Ducklow HW, Schofield O, Vernet M, Stammerjohn S, Erickson M (2012) Multiscale control of bacterial production by phytoplankton dynamics and sea ice along the western Antarctic Peninsula: a regional and decadal investigation. J Marine Syst 98–99:26–39

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protests. Springer, Berlin

    Google Scholar 

  • Fenchel T (1988) Marine plankton food chains. Annu Rev Ecol Syst 19:19–38

    Article  Google Scholar 

  • Fuhrman JA, Sleeter TD, Carlson CA, Proctor LM (1989) Dominance of bacterial biomass in the Sargasso Sea and its ecological implications. Mar Ecol Prog Ser 57:207–217

    Article  Google Scholar 

  • Giesenhagen HC, Detmer AE, de Wall J, Weber A, Gradinger RR, Jochem FJ (1999) How are Antarctic planktonic microbial food webs and algal blooms affected by melting of sea ice? Microcosm simulations. Aquat Microb Ecol 20:183–201

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Hashihama F, Hirawake T, Kudoh S, Kanda J, Furuya K, Yamaguchi Y, Ishimaru T (2008) Size fraction and class composition of phytoplankton in the Antarctic marginal ice zone along the 140°E meridian during February/March 2003. Polar Sci 2:109–120

    Article  Google Scholar 

  • Hewes CD (2009) Cell size of Antarctic phytoplankton as a biogeochemical condition. Antarct Sci 21:457–470

    Article  Google Scholar 

  • Hewes CD, Holm-Hansen O, Sakshaug E (1983) Nanoplankton and microplankton studies during the circumnavigation cruise. Antarct J US 18:169–171

    Google Scholar 

  • Hewes CD, Sakshaug E, Reid FMH, Holm-Hansen O (1990) Microbial autotrophic and heterotrophic eucaryotes in Antarctic waters: relationships between biomass and Chlorophyll, adenosine triphosphate and particulate organic carbon. Mar Ecol Prog Ser 63:27–35

    Article  CAS  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Jażdżewski K, Jurasz W, Kittel W, Presler E, Presler P, Siciński J (1986) Abundance and biomass estimates of the benthic fauna in Admiralty Bay, King George Island, South Shetland Islands. Polar Biol 6:5–16

    Article  Google Scholar 

  • Karl DM, Holm-Hansen O, Taylor GT, Tien G, Bird DF (1991) Microbial biomass and productivity in the western Bransfield Strait, Antarctica during the 1986–87 austral summer. Deep Sea Res 38:1029–1055

    Article  Google Scholar 

  • Kejna M, Araźny A, Sobota I (2013) Climatic change on King George Island in the years 1948–2011. Pol Polar Res 34:213–235

    Google Scholar 

  • Kopczyńska EE (1996) Annual study of phytoplankton in Admiralty Bay, King George Island, Antarctica. Pol Polar Res 17:151–164

    Google Scholar 

  • Kopczyńska EE (2008) Phytoplankton variability in Admiralty Bay, King George Island, South Shetland Islands: six years of monitoring. Pol Polar Res 29:117–139

    Google Scholar 

  • Lange PK, Tenenbaum DR, Braga ESB, Campos LS (2007) Microphytoplankton assemblages in shallow waters at Admiralty Bay (King George Island, Antarctica) during the summer 2002–2003. Polar Biol 30:1483–1492

    Article  Google Scholar 

  • Lange PK, Tenenbaum DR, Tavano VM, Paranhos R, Campos LS (2014) Shifts in microphytoplankton species and cell size at Admiralty Bay. Antarctic Science, Antarctica. doi:10.1017/S0954102014000571

    Google Scholar 

  • Lannuzel D, Schoemann V, Dumont I, Content M, Jong J, Tison JL, Delille B, Becquevort S (2013) Effect of melting Antarctic sea ice on the fate of microbial communities studied in microcosms. Polar Biol 36:1483–1497

    Article  Google Scholar 

  • Leakey RJG, Archer SD, Grey J (1996) Microbial dynamics in coastal waters of East Antarctica: bacterial production and nanoflagellate bacterivory. Mar Ecol Prog Ser 142:3–17

    Article  Google Scholar 

  • Lipski M (1987) Variations of physical conditions, nutrients and Chlorophyll a contents in Admiralty Bay (King George Island, South Shetlands Islands, 1979). Pol Polar Res 8:307–332

    Google Scholar 

  • Madejski P, Rakusa-Suszczewski S (1990) Annual observations of iceberg as tracers of water movement in the Bransfield Strait in front of Admiralty Bay (King George, South Shetland Islands). Antarctic Sci 2:259–263

    Article  Google Scholar 

  • Marchant HJ, Davidson AT, Wright SW (1987) The distribution and abundance of chroococcoid cyanobacteria in the Southern Ocean. Proc NIPR Symp Polar Biology 1:1–9

    Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990) Iron in Antarctic waters. Nature 345:156–158

    Article  CAS  Google Scholar 

  • Mieczan T, Górniak D, Swiatecki A, Zdanowski M, Tarkowska-Kukuryk M (2013) The distribution of ciliates on Ecology Glacier (King George Island, Antarctica): relationships between species assemblages and environmental parameters. Polar Biol 36:249–258

    Article  Google Scholar 

  • Moloney CL (1992) Carbon and the Antarctic marine food web. Science 257:259

    Article  CAS  PubMed  Google Scholar 

  • Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, Schofield O (2009) Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science 323:1470–1473

    Article  CAS  PubMed  Google Scholar 

  • Montone RC, Alvarez CE, Bícego MC, Braga ES, Brito TAS, Campos LS, Fontes RFC, Castro BM, Corbisier TN, Evangelista H, Francelino M, Gomes V, Ito RG, Lavrado HP, Leme NP, Mahiques MM, Martins CC, Nakayama CR, Ngan PV, Pellizari VH, Pereira AB, Petti MAV, Sander M, Schaefer CEGR, Weber RR (2013) Environmental assessment of Admiralty Bay, King George Island, Antarctica. In: Verde C, Prisco G (eds) Adaptation and evolution in marine environments, 2nd edn. Springer, Berlin, pp 157–175

    Chapter  Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu KY, DeLong EF (1998) Seasonal and spatial variability of Bacterial and Archaeal assemblages in the coastal waters near Anvers Island, Antarctia. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nedzarek A, Rakusa-Suszczewski S (2004) Decomposition of macroalgae and the release of nutrients in Admiralty Bay, King George Island, Antarctica. Polar Biosci 17:26–35

    Google Scholar 

  • Neveux J, Lantoine F (1993) Spectrofluorometric assay of chlorophylls and phaeopigments using the least squares approximation technique. Deep Sea Res I 40:1747–1765

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Potapova M, Snoeijs P (1997) The natural life cycle in wild populations of Diatom moniliformis (Bacillariophyceae) and its disruption in an aberrant environment. J Phycol 33:924–937

    Article  Google Scholar 

  • Price B, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS 101:4631–4636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rakusa-Suszczewski S (1980) Environmental conditions and the functioning of Admiralty Bay (South Shetland Islands) as part of the near shore Antarctic ecosystem. Pol Polar Res 1:11–27

    Google Scholar 

  • Rakusa-Suszczewski S (1995) The hydrography of Admiralty Bay and its inlets, coves and lagoons (King George Island, Antarctica). Pol Polar Res 16:61–70

    Google Scholar 

  • Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J Plankton Res 7:279–294

    Article  Google Scholar 

  • Rodríguez J, Jiménez-Gómez F, Blanco JM, Figueroa FL (2002) Physical gradients and spatial variability of the size structure and composition of phytoplankton in the Gerlache Strait (Antarctica). Deep Sea Res II 49:693–706

    Article  Google Scholar 

  • Rückamp M, Braun M, Suckro S, Blindow N (2011) Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change 79:99–109

    Article  Google Scholar 

  • Schloss IR, Nozais C, Mas S, Hardenberg B, Carmack E, Tremblay JE, Brugel S, Demers S (2008) Picophytoplankton and nanophytoplankton abundance and distribution in the southeastern Beaufort Sea (Mackenzie Shelf and Amundsen Gulf) during Fall 2002. J Mar Syst 74:978–993

    Article  Google Scholar 

  • Schloss IR, Wasilowska A, Dumont D, Almandoz GO, Hernando MP, Michaud-Tremblay CA, Saravia L, Rzepecki M, Monien P, Monien D, Kopczyńska EE, Bers AV, Ferreyra GA (2014) On the phytoplankton bloom in coastal waters of southern King George Island (Antarctica) in January 2010: an exceptional feature? Limnol Oceanogr 59:195–210

    Article  CAS  Google Scholar 

  • Simões JC, Ferron FA, Braun M, Neto JA, Aquino FE (2001) A GIS for the Antarctic specially managed area of Admiralty Bay, King George Island, Antarctica. Geo-Spat Inf Sci 4:8–14

    Article  Google Scholar 

  • Simon M, Glöckner FO, Amann R (1999) Different community structure and temperature optima of heterotrophic picoplankton in various regions of the Southern Ocean. Aqua Microb Ecol 18:275–284

    Article  Google Scholar 

  • Teixeira MC, Santana NF, Azevedo JCR, Pagioro TA (2011) Bacterioplankton features and its relations with doc characteristics and other limnological variables in Paraná river floodplain environments (PR/MS-Brazil). Braz J Microbiol 42:897–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tenenbaum DR, Barrera-Alba JJ, Duarte RB, Tenório MMB (2010) Plankton Structure of shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula (WAP): pico, nano and microplankton and Chlorophyll biomass. INCT-APA Annual Activity Report. doi:10.4322/apa.2014.033

  • Tenório MMB, Le Borgne R, Rodier M, Neveux J (2005) The impact of terrigeneous inputs on the Bay of Ouinné (New Caledonia) phytoplankton communities: a spectrofluorometric and microscopic approach. Estuar Coast Shelf Sci 64:531–545

    Article  Google Scholar 

  • Tenório MMB, Duarte RB, Barrera-Alba JJ, Tenenbaum DR (2010) Plankton Structure in a shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula (WAP): chlorophyll biomass and size-fractionated chlorophyll during austral summer 2009/2010. INCT-APA Annual Activity Report. doi:10.4322/apa.2014.034

  • Tenório MMB, Barrera-Alba JJ, Tenenbaum DR (2013) Plankton Structure of the shallow coastal zone at Admiralty Bay, King George Island, West Antarctic Peninsula (Wap): chlorophyll biomass and size-fractionated chlorophyll during austral summer 2010/2011. INCT-APA Annual Activity Report. doi:10.4322/apa.2014.105

  • Thingstad TF, Martinussen I (1991) Are bacteria active in the cold pelagic ecosystem of the Barents Sea? Polar Res 10:255–266

    Article  Google Scholar 

  • Treguer P, Jacques G (1992) Dynamics of nutrients and phytoplankton, and structure of food webs in the different sub-systems of the Antarctic Ocean. Polar Biol 12:149–162

    Article  Google Scholar 

  • Utermöhl H (1958) Perfeccionamento del metodo cuantitativo del fitoplancton. Commun Assoc Int Limnol Theor Appl 9:1–89

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446

    Article  CAS  Google Scholar 

  • Vosjan JH, Olańczuk-Neyman KM (1991) Influence of temperature on respiratory ets-activity of micro-organisms from Admiralty Bay, King George Island, Antarctica. Neth J Sea Res 28:221–225

    Article  Google Scholar 

  • Weissenberger J (1998) Arctic Sea ice biota: design and evaluation of a mesocosm experiment. Polar Biol 19:151–159

    Article  Google Scholar 

  • White PA, Kalff J, Rasmussen JB, Gasol JM (1991) The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microb Ecol 21:99–118

    Article  CAS  PubMed  Google Scholar 

  • Wright SW, Ishikawa A, Marchant HJ, Davidson AT, Enden RL, Nash GV (2009) Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797–808

    Article  Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293

    Article  Google Scholar 

  • Zdanowski MK (1995) Characteristics of bacteria in selected Antarctic marine habitats. In: Rakusa-Suszczewski S, Donachie SP (eds) Microbiology of Antarctic marine environments and Krill intestine, its decomposition and digestive enzymes. Polish Academy of Sciences, Warsaw, pp 5–100

    Google Scholar 

Download references

Acknowledgments

This work was developed as a part of the National Institute of Science and Technology Antarctic Environmental Research (INCT-APA), that receive scientific and financial supports of the National Council for Research and Development (CNPq process: n° 574018/2008-5) and Research Support Foundation of the State of Rio de Janeiro (FAPERJ n° E-16/170.023/2008). The authors are also grateful for support from the Brazilian Ministries of Science, Technology, and Innovation (MCTI) and from Environment (MMA), the Inter-Ministry Commission for Sea Resources (CIRM), and the Brazilian Navy (MB). Thanks are also extended to the Marine Organic Chemical Laboratory of the Oceanographic Institute of Sao Paulo University (LabQOM-IOUSP) for physical and chemical analysis, to Dr Terezinha Absher (CEM-UFPR) for in-situ wind speed and air temperature measurements, to Moura RB for the figure showing the study area (Fig. 1), and to the Marine Organic Chemical Laboratory of the Oceanographic Institute of Sao Paulo University (LabQOM-IOUSP). M. Vanzan thanks CNPq for the Technological and Industrial Development fellowship under grant no. 385083/2013-0. J.J. Barrera-Alba thanks CNPq for the post-doctoral fellowship under grant no. 151651/2010-8. M.M.B. Tenório thanks FAPERJ/CAPES for the post-doctoral fellowship under grant no. E-26/102.015/2009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José Juan Barrera-Alba or Denise Rivera Tenenbaum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanzan, M., Barrera-Alba, J.J., Tenório, M.M.B. et al. Picoplankton and nanoplankton variability in an Antarctic shallow coastal zone (Admiralty Bay) during the austral summer of 2010/2011. Polar Biol 38, 1267–1284 (2015). https://doi.org/10.1007/s00300-015-1692-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1692-1

Keywords

Navigation