Skip to main content

Advertisement

Log in

Microbial biomass and respiration responses to nitrogen fertilization in a polar desert

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

How microbial communities respond to increases in available nitrogen (N) will influence carbon (C) and nutrient cycles. Most studies addressing N fertilization focus on mid-latitude ecosystems, where complex aboveground–belowground interactions can obscure the response of the soil microbial community, and little is known about how soil microbial communities of polar systems, particularly polar deserts, will respond. The low C content and comparatively simpler (low biomass and biodiversity) soil communities of the McMurdo Dry Valleys of Antarctica may allow easier identification of the mechanisms by which N fertilization influences microbial communities. Therefore, we conducted a microcosm incubation using three levels of N fertilization, added in solution to simulate a pulse of increased soil moisture, and measured microbial biomass and respiration over the course of 4.5 months. Soil characteristics, including soil pH, conductivity, cation content, chlorophyll a, and organic C content were measured. Soils from two sites that differed in stoichiometry were used to examine how in situ C:N:P influenced the N-addition response. We hypothesized that negative influences of N enrichment would result from increased salinity and ion content, while positive influences would result from enhanced C availability and turnover. We observed that microbes were moderately influenced by N addition, including stimulation and inhibition with increasing levels of N. Mechanisms identified include direct inhibition due to N toxicity and stimulation due to release from N, rather than C, limitation. Our results suggest that, by influencing microbial biomass and activity, N fertilization will influence C cycling in soils with very low C content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ananyeva N, Polyanskaya L, Susyan E, Vasenkina I, Wirth S, Zvyagintsev D (2008) Comparative assessment of soil microbial biomass determined by the methods of direct microscopy and substrate-induced respiration. Microbiology 77:356–364

    Article  CAS  Google Scholar 

  • Asghar HN, Setia R, Marschner P (2012) Community composition and activity of microbes from saline soils and non-saline soils respond similarly to changes in salinity. Soil Biol Biochem 47:175–178

    Article  CAS  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  • Ayres E, Nkem JN, Wall DH, Adams BJ, Barrett JE, Simmons BL, Virginia RA, Fountain AG (2010) Experimentally increased snow accumulation alters soil moisture and animal community structure in a polar desert. Polar Biol 33:897–907

    Article  Google Scholar 

  • Ball BA, Virginia RA (2012) Meltwater seep patches increase heterogeneity of soil geochemistry and therefore habitat suitability. Geoderma 189–190:652–660

    Article  Google Scholar 

  • Ball BA, Virginia RA, Barrett JE, Parsons AN, Wall DH (2009) Interactions between physical and biotic factors influence CO2 flux in Antarctic dry valley soils. Soil Biol Biochem 41:1510–1517

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH (2002) Trends in resin and KCl-extractable soil nitrogen across landscape gradients in Taylor Valley, Antarctica. Ecosystems 5:289–299

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Parsons AN, Powers LE, Burkins MB (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85:3105–3118

    Article  Google Scholar 

  • Barrett JE, Virginia RA, Parsons AN, Wall DH (2005) Potential soil organic matter turnover in Taylor Valley, Antarctica. Arct Antarct Alp Res 37:108–117

    Google Scholar 

  • Barrett JE, Virginia RA, Hopkins DW, Aislabie J, Bargagli R, Bockheim JG, Campbell IB, Lyons WB, Moorhead DL, Nkem JN, Sletten RS, Steltzer H, Wall DH, Wallenstein MD (2006a) Terrestrial ecosystem processes of Victoria Land, Antarctica. Soil Biol Biochem 38:3019–3034

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Parsons AN, Wall DH (2006b) Soil carbon turnover in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 38:3065–3082

    Article  CAS  Google Scholar 

  • Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, Fountain AG, Wall DH, Moorhead DL (2007) Biogeochemical stoichiometry of Antarctic dry valley ecosystems. J Geophys Res 112:G01010

    Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Doran PT, Fountain AG, Welch KA, Lyons WB (2008) Persistent effects of a discrete warming event on a polar desert ecosystem. Glob Change Biol 14:2249–2261

    Article  Google Scholar 

  • Bate DB (2007) The origin, distribution, and characterization of soil organic matter in the McMurdo Dry Valleys, Antarctica. Dartmouth College, Hanover, NH

  • Bate DB, Barrett JE, Poage MA, Virginia RA (2008) Soil phosphorus cycling in an Antarctic polar desert. Geoderma 144:21–31

    Article  CAS  Google Scholar 

  • Bockheim JG, McLeod M (2008) Soil distribution in the McMurdo Dry Valleys, Antarctica. Geoderma 144:43–49

    Article  Google Scholar 

  • Bockheim JG, Campbell IB, McLeod M (2007) Permafrost distribution and active-layer depths in the McMurdo Dry Valleys, Antarctica. Permafr Periglac Process 18:217–227

    Article  Google Scholar 

  • Bottomley PJ (1994) Light microscopic methods for studying soil microorganisms. In: Methods of soil analysis, part 2 microbiological and biochemical properties. Soil Science Society of America, Madison, WI

  • Burkins MB, Virginia RA, Chamberlain CP, Wall DH (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica. Ecology 81:2377–2391

    Article  Google Scholar 

  • Burkins MB, Virginia RA, Wall DH (2001) Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Glob Change Biol 7:113–125

    Article  Google Scholar 

  • Campbell IB, Claridge GGC (1987) Antarctica: soils, weathering processes and environment. Elsevier, New York

    Google Scholar 

  • Campbell IB, Claridge GGC, Balks MR, Campbell DI (1997) Moisture content in soils of the McMurdo Sound and Dry Valley region of Antarctica. In: Lyons WB, Howard-Williams C, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. A.A. Balkema, Rotterdam, pp 61–76

    Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA (2010) On the rocks: the microbiology of Antarctic dry valley soils. Nat Rev Microbiol 8:129–138

    Article  CAS  PubMed  Google Scholar 

  • Courtright EM, Wall DH, Virginia RA (2001) Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct Sci 13:9–17

    Google Scholar 

  • Drever JI (1997) Weathering processes. In: Saether OM, de Caritat P (eds) Geochemical processes, weathering and groundwater recharge in catchments. A.A. Balkema, Rotterdam, pp 3–19

    Google Scholar 

  • Driscoll CT, Lawrence GB, Bulger AJ, Butler TJ, Cronan CS, Eagar C, Lambert KF, Likens GE, Stoddard JL, Weathers KC (2009) Acidic deposition in the northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience 51:180–198

    Article  Google Scholar 

  • Elser JJ, Urabe J (1999) The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80:735–751

    Article  Google Scholar 

  • Fornara DA, Tilman D (2012) Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology 93:2030–2036

    Article  PubMed  Google Scholar 

  • Fountain AG, Lyons WB, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Virginia RA (1999) Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience 49:961–971

    Article  Google Scholar 

  • Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D (2010) Snow in the McMurdo Dry Valleys, Antarctica. Int J Climatol 30:633–642

    Google Scholar 

  • Freckman D, Virginia RA (1998) Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: Priscu JC (ed) Ecosystem dynamics in a polar desert: the McMurdo Dry Valleys, Antarctica. American Geophysical Union, Washington, pp 323–335

    Google Scholar 

  • Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Gebauer RLE, Ehleringer JR (2000) Water and nitrogen uptake patterns following moisture pulses in a cold desert community. Ecology 81:1415–1424

    Article  Google Scholar 

  • Geisseler D, Horwath WR, Joergensen RG, Ludwig B (2010) Pathways of nitrogen utilization by soil microorganisms—a review. Soil Biol Biochem 42:2058–2067

    Article  CAS  Google Scholar 

  • Hall SJ, Sponseller RA, Grimm NB, Huber D, Kaye JP, Clark C, Collins SL (2011) Ecosystem response to nutrient enrichment across an urban airshed in the Sonoran Desert. Ecol Appl 21:640–660

    Article  PubMed  Google Scholar 

  • Hartley IP, Hopkins DW, Sommerkorn M, Wookey PA (2010) The response of organic matter mineralisation to nutrient and substrate additions in sub-arctic soils. Soil Biol Biochem 42:92–100

    Article  CAS  Google Scholar 

  • Hobbie SE, Nadelhoffer KJ, Högberg P (2002) A synthesis: the role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242:163–170

    Article  CAS  Google Scholar 

  • Hodson A, Roberts TJ, Engvall AC, Holmen K, Mumford P (2010) Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic. Biogeochemistry 98:171–184

    Article  CAS  Google Scholar 

  • Hopkins DW, Sparrow AD, Shillam LL, English LC, Dennis PG, Novis P, Elberling B, Gregorich EG, Greenfield LG (2008) Enzymatic activities and microbial communities in an Antarctic dry valley soil: responses to C and N supplementation. Soil Biol Biochem 40:2130–2136

    Article  CAS  Google Scholar 

  • Lamb EG, Han S, Lanoil BD, Henry GHR, Brummell ME, Banerjee S, Siciliano SD (2011) A high arctic soil ecosystem resists long-term environmental manipulations. Glob Change Biol 17:3187–3194

    Article  Google Scholar 

  • Lancaster N (2002) Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arct Antarct Alp Res 34:318–323

    Article  Google Scholar 

  • Lisle JT, Priscu JC (2004) The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microb Ecol 47:427–439

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Crowley D (2009) Nitrogen deposition effects on carbon storage and fungal:bacterial ratios in coastal sage scrub soils of southern California. J Environ Qual 38:2267–2272

    Article  CAS  PubMed  Google Scholar 

  • Lucas RW, Klaminder J, Futter MN, Bishop KH, Egnell G, Laudon H, Högberg P (2011) A meta-analysis of the effects of nitrogen additions on base cations: implications for plants, soils, and streams. For Ecol Manag 262:95–104

    Article  Google Scholar 

  • McCrackin M, Harms T, Grimm N, Hall S, Kaye J (2008) Responses of soil microorganisms to resource availability in urban, desert soils. Biogeochemistry 87:143–155

    Article  CAS  Google Scholar 

  • Moorhead DL, Doran PT, Fountain AG, Lyons WB, McKnight DM, Priscu JC, Virginia RA, Wall DH (1999) Ecological legacies: impacts on ecosystems of the McMurdo Dry Valleys. Bioscience 49:1009–1019

    Article  Google Scholar 

  • Nkem JN, Virginia RA, Barrett JE, Wall DH, Li G (2006) Salt tolerance and survival thresholds for two species of Antarctic soil nematodes. Polar Biol 29:643–651

    Article  Google Scholar 

  • Poage MA, Barrettt JE, Virginia RA, Wall DH (2008) The influence of soil geochemistry on nematode distribution, McMurdo Dry Valleys, Antarctica. Arct Antarct Alp Res 40:119–128

    Article  Google Scholar 

  • Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob Change Biol 18:1918–1927

    Article  Google Scholar 

  • Rao LE, Parker DR, Bytnerowicz A, Allen EB (2009) Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts. J Arid Environ 73:920–930

    Article  Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    Article  CAS  Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol 13:28–39

    Article  Google Scholar 

  • Robinson CH, Wookey PA, Lee JA, Callaghan TV, Press MC (1998) Plant community responses to simulated environmental change at a high arctic polar semi-desert. Ecology 79:856–866

    Article  Google Scholar 

  • Shanhun FL, Almond PC, Clough TJ, Smith CMS (2012) Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biol Biochem 53:99–111

    Article  CAS  Google Scholar 

  • Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol Biochem 41:2052–2060

    Article  CAS  Google Scholar 

  • Strickland MS, Rousk J (2010) Considering fungal: bacterial dominance in soils: methods, controls, and ecosystem implications. Soil Biol Biochem 42:1385–1395

    Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  • Virginia RA, Wall DH (1999) How soils structure communities in the Antarctic dry valleys. Bioscience 49:973–983

    Article  Google Scholar 

  • Virginia RA, Jarrell WM, Franco-Vizcaino E (1982) Direct measurement of denitrification in a Prosopis (mesquite) dominated Sonoran desert ecosystem. Oecologia 53:120–122

    Article  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Wall DH, Virginia RA (1999) Controls on soil biodiversity: insights from extreme environments. Appl Soil Ecol 13:137–150

    Article  Google Scholar 

  • Wang S-G, Hou Y-L, Guo W (2010) Responses of nitrogen transformation and microbial community composition to nitrogen enrichment patch. Pedobiologia 54:9–17

    Article  Google Scholar 

  • Weintraub MN, Schimel JP (2005) Nitrogen cycling and the spread of shrubs control changes in the carbon balance of arctic tundra ecosystems. Bioscience 55:408–415

    Article  Google Scholar 

  • Wetzel RG, Likens GE (2000) Limnological analyses. Springer, New York

    Book  Google Scholar 

  • Yoshitake S, Uchida M, Koizumi H, Nakatsubo T (2007) Carbon and nitrogen limitation of soil microbial respiration in a High Arctic successional glacier foreland near Ny-angstrom lesund, Svalbard. Polar Res 26:22–30

    Article  Google Scholar 

Download references

Acknowledgments

We thank Paul Zietz for assistance with sample processing and analysis. We appreciate methodological assistance provided by Jill Mikucki, James Scott, Brad Taylor, and Kathy Welch. Additional laboratory support was provided by Clara Chew. We thank three anonymous reviewers for their thoughtful insight which led to significant improvements to this manuscript. This research was supported by National Science Foundation Office of Polar Program grants to the McMurdo Long-Term Ecological Research Program ANT-0423595.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Becky A. Ball.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, B.A., Virginia, R.A. Microbial biomass and respiration responses to nitrogen fertilization in a polar desert. Polar Biol 37, 573–585 (2014). https://doi.org/10.1007/s00300-014-1459-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-014-1459-0

Keywords

Navigation