Skip to main content
Log in

Characterization and comparison of potential denitrifiers in microbial mats from King George Island, Maritime Antarctica

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Cyanobacterial microbial mats are highly structured communities commonly found in Antarctic inland waters including melt streams. These benthic microbial associations comprise a large number of microorganisms with different metabolic capacities, impacting nutrient dynamics where established. The denitrification process is a feasible nitrogen loss pathway and a biological source of nitrous oxide, a potent greenhouse gas that also promotes ozone depletion. Potential denitrifiers from five microbial mats were characterized using a PCR-DGGE (denaturing gradient gel electrophoresis) approach. Molecular markers encoding for key enzymes in the denitrification process (nirK, nirS and nosZ) were used. Fingerprints were obtained for the five sampled mats and compared for two successive years. Distance analysis showed that despite the sampled year, the denitrifying genetic potential was similar between most of the sites when represented in Euclidean space. The number of dominant denitrifiers detected for each sample ranged between 6 and 18 for nirK, 4–10 for nirS and 6–17 for nosZ. The seventy-two sequenced phylotypes showed 80–98 % identity to previously reported environmental sequences from water column, sediments and soil samples. These results suggest that Antarctic microbial mats have a large denitrification potential, previously uncharacterized and composed by both site-specific and common phylotypes belonging mainly to Alpha-, Beta- and Gammaproteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Betlach MR (1982) Evolution of bacterial denitrification and denitrifier diversity. Antonie Van Leeuwenhoek 48:585–607

    Article  CAS  PubMed  Google Scholar 

  • Bonin PC, Michotey VD (2006) Nitrogen budget in a microbial mat in the Camargue (southern France). Mar Ecol-Prog Ser 322:75–84

    Article  CAS  Google Scholar 

  • Bothe H, Jost G, Schloter M, Ward BB, Witzel K-P (2000) Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol Rev 24:673–690

    Article  CAS  PubMed  Google Scholar 

  • Braker G, Fesefeldt A, Witzel K-P (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brinkhoff T, Giebel H-A, Simon M (2008) Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 189:531–539

    Article  CAS  PubMed  Google Scholar 

  • Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buffan-Dubau E, Pringault O, de Wit R (2001) Artificial cold-adapted microbial mats cultured from Antarctic lake samples. 1. Formation and structure. Aquat Microb Ecol 26:115–125

    Article  Google Scholar 

  • Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinfor 4:29

    Article  Google Scholar 

  • Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI (2012) Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 82:724–735

    Article  CAS  PubMed  Google Scholar 

  • Codispoti LA (2010) Interesting times for marine N2O. Science 327:1339–1340

    Article  CAS  PubMed  Google Scholar 

  • Convey P, Gibson JAE, Hillenbrand CD, Hodgson DA, Pugh PJA, Smellie JL, Stevens MI (2008) Antarctic terrestrial life—challenging the history of the frozen continent? Biol Rev 83:103–117

    Article  PubMed  Google Scholar 

  • Desnues C, Michotey VD, Wieland A, Zhizang C, Fourçans A, Duran R, Bonin PC (2007) Seasonal and diel distributions of denitrifying and bacterial communities in a hypersaline microbial mat (Camargue, France). Water Res 41:3407–3419

    Article  CAS  PubMed  Google Scholar 

  • Downes M, Howard-Williams C, Hawes I, Schwarz A (2000) Nitrogen dynamics in a tidal lagoon at Bratina Island, McMurdo Ice Shelf, Antarctica. In: Davison W, Howard-Williams C, Broady P (eds) Antarctic ecosystems: models for wider ecological understanding. New Zealand Natural Sciences, Canterbury University, Christchurch, pp 19–25

  • Dray S, Dufour A-B (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20

    Google Scholar 

  • Etchebehere C, Tiedje J (2005) Presence of two different active nirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor. Appl Environ Microbiol 71:5642–5645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández‐Valiente E, Camacho A, Rochera C, Rico E, Vincent WF, Quesada A (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microbiol Ecol 59:377–385

    Google Scholar 

  • Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, de Beer D, Zhou H-y, Kuypers MMM (2009) Aerobic denitrification in permeable Wadden Sea sediments. ISME J 4:417–426

    Article  PubMed  Google Scholar 

  • Golet DS, Ward BB (2001) Vertical distribution of denitrification potential, denitrifying bacteria, and benzoate utilization in intertidal microbial mat communities. Microb Ecol 42:22–34

    CAS  PubMed  Google Scholar 

  • Gooseff MN, McKnight DM, Runkel RL, Duff JH (2004) Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica. Limnol Oceanogr 49:1884–1895

    Article  CAS  Google Scholar 

  • Gordon AD (1999) Classification, 2nd edn. Chapman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Gosink JJ, Herwig RP, Staley JT (1997) Octadecabacter arcticus gen. nov., sp. nov., and O. antarcticus, sp. nov., nonpigmented, psychrophilic gas vacuolate bacteria from polar sea ice and water. Syst Appl Microbiol 20:356–365

    Article  Google Scholar 

  • Gouy M, Sp Guindon, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Grasshoff K, Kremlling K, Ehrhardt M (1983) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hallin S, Lindgren P-E (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hallin S, Throbäck IN, Dicksved J, Pell M (2006) Metabolic profiles and genetic diversity of denitrifying communities in activated sludge after addition of methanol or ethanol. Appl Environ Microbiol 72:5445–5452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heylen K, Gevers D, Vanparys B, Wittebolle L, Geets J, Boon N, De Vos P (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ Microbiol 8:2012–2021

    Article  CAS  PubMed  Google Scholar 

  • Howard-Williams C, Hawes I (2007) Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarct Sci 19:205–217

    Article  Google Scholar 

  • Howard-Williams C, Priscu JC, Vincent WF (1989) Nitrogen dynamics in two Antarctic streams. Hydrobiologia 172:51–61

    Article  CAS  Google Scholar 

  • Hughes KA, McCartney HA, Lachlan-Cope TA, Pearce DA (2004) A preliminary study of airborne microbial biodiversity over Peninsular Antarctica. Cell Mol Biol (Noisy-le-grand) 50:537–542

    CAS  Google Scholar 

  • Jones CM, Hallin S (2010) Ecological and evolutionary factors underlying global and local assembly of denitrifier communities. ISME J 4:633–641

    Article  PubMed  Google Scholar 

  • Jones CM, Welsh A, Throbäck IN, Dörsch P, Bakken LR, Hallin S (2011) Phenotypic and genotypic heterogeneity among closely related soil-borne N2- and N2O-producing Bacillus isolates harboring the nosZ gene. FEMS Microbiol Ecol 76:541–552

    Article  CAS  PubMed  Google Scholar 

  • Joye SB, Lee RY (2004) Benthic microbial mats: important sources of fixed nitrogen and carbon to the Twin Cays, Belize ecosystem. National Museum of Natural History, Smithsonian Institution

  • Joye S, Paerl H (1994) Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Mar Biol 119:285–295

    Article  CAS  Google Scholar 

  • Jung J, Choi S, Jung H, Scow KM, Park W (2013) Primers for amplification of nitrous oxide reductase genes associated with Firmicutes and Bacteroidetes in organic-compound-rich soils. Microbiology 159:307–315

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood D (1994) Sanplus segmented flow analyzer and its applications. Seawater analysis. Skalar, Amsterdam

    Google Scholar 

  • Kisand V, Wikner J (2003) Limited resolution of 16S rDNA DGGE caused by melting properties and closely related DNA sequences. J Microbiol Meth 54:183–191

    Article  CAS  Google Scholar 

  • Kloos K, Mergel A, Rösch C, Bothe H (2001) Denitrification within the genus Azospirillum and other associative bacteria. Funct Plant Biol 28:991–998

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • McKnight DM, Runkel RL, Tate CM, Duff JH, Moorhead DL (2004) Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc 23:171–188

    Article  Google Scholar 

  • Michotey V, Méjean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd 1-denitrifying bacteria in environmental marine samples. Appl Environ Microb 66:1564–1571

    Article  CAS  Google Scholar 

  • Mosier AC, Francis CA (2010) Denitrifier abundance and activity across the San Francisco Bay estuary. Environ Microbiol Rep 2:667–676

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  CAS  PubMed  Google Scholar 

  • Nagashima S, Kamimura A, Shimizu T, Nakamura-Isaki S, Aono E, Sakamoto K, Ichikawa N, Nakazawa H, Sekine M, Yamazaki S, Fujita N, Shimada K, Hanada S, Nagashima KV (2012) Complete genome sequence of phototrophic betaproteobacterium Rubrivivax gelatinosus IL144. J Bacteriol 194:3541–3542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nkem JM, Wall DH, Virginia RA, Barrett JE, Broos EJ, Porazinska D (2006) Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol 29:346–352

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package v. 1.17–9. http://CRAN.R-project.org/package=vegan

  • Orlando J, Carú M, Pommerenke B, Braker G (2012) Diversity and activity of denitrifiers of Chilean arid soil ecosystems. Front Microbiol. doi:10.3389/fmicb.2012.00101

    Google Scholar 

  • Paerl HW, Pinckney JL, Steppe TF (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2:11–26

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Peeters K, Verleyen E, Hodgson DA, Convey P, Ertz D, Vyverman W, Willems A (2012) Heterotrophic bacterial diversity in aquatic microbial mat communities from Antarctica. Polar Biol 35:543–554

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Robertson L, Kuenen JG (1984) Aerobic denitrification: a controversy revived. Arch Microbiol 139:351–354

    Article  CAS  Google Scholar 

  • Santoro AE, Boehm AB, Francis CA (2006) Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Appl Environ Microb 72:2102–2109

    Article  CAS  Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    Article  CAS  Google Scholar 

  • Selje N, Simon M, Brinkhoff T (2004) A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448

    Article  CAS  PubMed  Google Scholar 

  • Shiro Y, Fujii M, Isogai Y, Adachi S-i, Iizuka T, Obayashi E, Makino R, Nakahara K, Shoun H (1995) Iron-ligand structure and iron redox property of nitric oxide reductase cytochrome P450nor from Fusarium oxysporum: relevance to its NO reduction activity. Biochemistry 34:9052–9058

    Article  CAS  PubMed  Google Scholar 

  • Song B, Ward BB (2003) Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. FEMS Microbiol Ecol 43:349–357

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ (2012) Cyanobacterial mats and stromatolites. In: Whitton BA (ed) Ecology of cyanobacteria II: their diversity in space and time, vol XV. Springer, Dordrecht, pp 65–125

    Chapter  Google Scholar 

  • Tang EP, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperatures? J Phycol 33:171–181

    Article  Google Scholar 

  • Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, Wollherr A, Kjelleberg S, Daniel R, Simon M, Thomas T, Brinkhoff T (2012) Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J 6:2229–2244

    Article  CAS  PubMed  Google Scholar 

  • Throbäck IN, Enwall K, Jarvis Å, Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol 49:401–417

    Article  PubMed  Google Scholar 

  • Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Climatol 25:279–294

    Article  Google Scholar 

  • Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J Climatol 27:277–293

    Article  Google Scholar 

  • van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • van Hannen EJ, Zwart G, van Agterveld MP, Gons HJ, Ebert J, Laanbroek HJ (1999) Changes in bacterial and eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Appl Environ Microb 65:795–801

    Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J (2012) Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microb 78:549–559

    Article  Google Scholar 

  • Vincent W, Downes M, Castenholz R, Howard-Williams C (1993) Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221

    Article  Google Scholar 

  • Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol Appl 16:2143–2152

    Article  PubMed  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol R 62:1353–1370

    CAS  Google Scholar 

  • Wilkins D, Yau S, Williams TJ, Allen MA, Brown MV, DeMaere MZ, Lauro FM, Cavicchioli R (2013) Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev 37:303–335

    Article  CAS  PubMed  Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: the basis of polar ecosystem processes. Biodivers Conserv 5:1271–1293

    Article  Google Scholar 

  • Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K (2012) Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 27:456–461

    Article  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microb 62:316–322

    CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol R 61:533–616

    CAS  Google Scholar 

  • Zumft WG, Kroneck PMH (2006) Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv Microb Physiol 52:107–227

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Instituto Antártico Uruguayo, the staff of Base Científica Antártica Artigas and Secretaría de Relaciones Exteriores (Mexico) for their logistic and technical support. We also thank MSc. Osiris Gaona, MSc. Antonio Cruz-Peralta and Fermin S. Castillo-Sandoval for valuable technical support in the experimental and analytical processes. RJ A-H. and CM C. received postdoctoral (RJ A-H) and graduate (CM) scholarships from CONACyT, Mexico. Financial support was provided (LIF) by UNAM-PAPIIT (100212-3) and SEP-CONACyT (151796). LIF acknowledges sabbatical leave grants from CONACyT and PASPA-UNAM. We appreciate comments and suggestions from Paul R. Gill that substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa I. Falcón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alcántara-Hernández, R.J., Centeno, C.M., Ponce-Mendoza, A. et al. Characterization and comparison of potential denitrifiers in microbial mats from King George Island, Maritime Antarctica. Polar Biol 37, 403–416 (2014). https://doi.org/10.1007/s00300-013-1440-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-013-1440-3

Keywords

Navigation