Skip to main content

Advertisement

Log in

Feeding ecology and trophic impact of the hydroid Obelia dichotoma in the Kongsfjorden (Spitsbergen, Arctic)

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Obelia dichotoma is a thecate hydroid with a worldwide distribution, occurring mainly on shallow water hard substrates. Since the trophic ecology of hydroids in polar waters is badly understood, the aim of the present work was to study qualitatively and quantitatively the diet of these organisms in an Arctic environment and to determine their trophic significance. For this purpose, the density of the hydroid population was documented, and simultaneously, zooplankton was sampled in two different years (1997 and 1998). Prey capture rates were estimated by analysing the gastrovascular content of the polyps in a diurnal cycle. Additionally, the digestion time of O. dichotoma was measured by laboratory feeding experiments using diatoms as food items. The analyses of the gastrovascular cavities of the polyps sampled during the diurnal cycles showed that O. dichotoma fed mainly on faecal pellets, organic matter and microalgae. Zooplankton prey was also observed, but gastrovascular contents and zooplankton abundance did not show any correlation in both years. The consumption rates of the hydroid populations differed between the 2 years. It was almost double (8.9 mg Carbon m−2) in 1998 compared to 1997 (5.5 mg Carbon m−2). The significance of the environmental variability in the feeding ecology and population dynamics of hydroids under Arctic conditions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andreassen I, Noethig EM, Wassmann P (1996) Vertical particle flux on the shelf off northern Spitsbergen, Norway. Mar Ecol Progr Ser 137:215–228

    Article  Google Scholar 

  • Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192

    Article  PubMed  CAS  Google Scholar 

  • Arntz WE, Brey T, Gallardo V (1994) Antarctic Zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304

    Google Scholar 

  • Auel H, Hagen W (2002) Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean. Mar Biol 140:1013–1021

    Article  Google Scholar 

  • Barangé M, Gili JM (1988) Feeding cycles and prey capture in Eudendrium racemosum (Cavolini, 1785). J Exp Mar Biol Ecol 115:281–293

    Article  Google Scholar 

  • Barangé M, Zabala M, Riera T, Gili JM (1989) A general approach to the in situ energy budget of Eudendrium racemosum (Cnidaria, Hydrozoa) in the Western Mediterranean. Sci Mar 53(2–3):423–427

    Google Scholar 

  • Barnes DKA (1999) The influence of ice on polar near shore benthos. J Mar Biol Ass UK 79(3):401–407

    Article  Google Scholar 

  • Beers JR (1966) Studies on the chemical composition of the major zooplankton groups in the Sargasso Sea off Bermuda. Limnol Oceanogr 11:520–528

    Article  CAS  Google Scholar 

  • Bischof K, Hanelt D, Wiencke C (1999) Acclimation of maximal quantum yield of photosynthesis in the brown alga Alaria esculenta under high light and UV radiation. Plant Biol 1:435–444

    Article  CAS  Google Scholar 

  • Biswas AK, Biswas MR (1979) Handbook of environmental data and ecological parameters, vol 6. Environmental sciences and applications, Pergamon, Oxford

    Google Scholar 

  • Bluhm BA, Gradinger R, Piraino S (2007) First record of sympagic hydroids (Hydrozoa, Cnidaria) in Arctic coastal fast ice. Polar Biol 30:1557–1563

    Article  Google Scholar 

  • Boero F, Bucci C, Clucci AMR, Gravilli C, Stabili L (2007) Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Mar Ecol 28(Suppl 1):178–183

    Article  Google Scholar 

  • Boschma H (1925) On the feeding reactions and digestion in the coral polyp Astrangia danae, with notes on its symbiosis with zooxanthellae. Biol Bull 49:407–439

    Article  CAS  Google Scholar 

  • Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68:200

    Article  Google Scholar 

  • Brey T, Clarke A (1993) Population dynamics of marine benthic invertebrates in Antarctic and sub-Antarctic environments: are there unique adaptations? Antarct Sci 5:253–266

    Article  Google Scholar 

  • Buhr KJ (1976) Suspension feeding and assimilation efficiency in Lanice conchilega (Polychaeta). Mar Biol 38:373–383

    Article  Google Scholar 

  • Bullivant JS, Dearborn JH (1967) The fauna of the Ross Sea. NZ Dept Sci Ind Res Bull 176:1–76

    Google Scholar 

  • Cerrano C, Puce S, Chiantore M, Bavestrello G (2000) Unusual trophic strategies of Hydractinia angusta (Cnidaria, Hydrozoa) from Terra Nova Bay. Polar Biol 23:488–494

    Article  Google Scholar 

  • Christensen H (1967) Ecology of Hydractinia echinata. 1. Feeding biology. Ophelia 4:245–275

    Article  Google Scholar 

  • Coma R, Gili JM, Zabala M, Riera T (1994) Feeding and prey capture cycles in the aposymbiotic gorgonian Paramuricea clavata. Mar Ecol Prog Ser 115:257–270

    Article  Google Scholar 

  • Coma R, Gili JM, Zabala M (1995) Trophic ecology of a benthic marine hydroid, Campanularia everta. Mar Ecol Prog Ser 119:211–220

    Article  Google Scholar 

  • Coma R, Ribes M, Orejas C, Gili JM (1999) Prey capture by a benthic coral reef hydrozoan. Coral Reefs 18:141–145

    Article  Google Scholar 

  • Cornelius PFS (1982) Hydroids and medusa of the family Campanulariidae recorded from the eastern North Atlantic, with a world synopsis of genera. Bull Br Mus Zool Ser 42:37–148

    Google Scholar 

  • Cornelius PFS, Ostman C (1987) Redescription of Laomedea exigua M. Sars, a hydroid new to Scandinavia, with comments on its nematocysts, life cycles and feeding movements. Zool Scr 16:1–8

    Article  Google Scholar 

  • Di Camillo C, Puce S, Romagnoli T, Tazioli S, Totti C, Bavestrello G (2005) Relationships between benthic diatoms and hydrozoans (Cnidaria). J Mar Biol Assoc UK 85:1373–1380

    Article  Google Scholar 

  • Eilertsen HC, Taasen JP, WesIawski JM (1989) Phytoplankton studies in the fjords of West Spitzbergen: physical environment and production in spring and summer. J Plank Res 11:1245–1260

    Article  Google Scholar 

  • Elverhøi A, Lonne Ø, Seland R (1983) Glaciomarine sedimentation in a modern fjord environment, Spitsbergen. Polar Res 1:127–149

    Article  Google Scholar 

  • Gaino E, Bavestrello G, Cattaneo Vietti R et al (1994) Scanning electron microscope evidence for diatom uptake by 2 Antarctic sponges. Polar Biol 14:55–58

    Article  Google Scholar 

  • Genzano GN (2005) Trophic ecology of a benthic intertidal hydroid, Tubularia crocea, at Mar del Plata, Argentina. J Mar Biol Assoc UK 85:307–312

    Article  Google Scholar 

  • Gerland S, Winther JG, Ørbæk JB, Ivanov BV (1999) Physical properties, spectral reflectance and thickness development of first year fast ice in Kongsfjorden, Svalbard. Polar Res 18:275–282

    Article  Google Scholar 

  • Gili JM, Hughes RG (1995) Ecology of benthic hydroids. Oceanogr Mar Biol Ann Rev 33:351–422

    Google Scholar 

  • Gili JM, Alvá V, Pagès F, Klöser H, Arntz W (1996a) Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea. Polar Biol 16:507–512

    Article  Google Scholar 

  • Gili JM, Hughes RG, Alvà V (1996b) A quantitative study of feeding by the hydroid Tubularia larynx Ellis and Solander, 1786. Sci Mar 60:43–54

    Google Scholar 

  • Gili JM, Alvá V, Coma R, Orejas C, Pagès F, Ribes M, Zabala M, Arntz W, Bouillon J, Boero F, Hughes RG (1998) The impact of small benthic passive suspension feeders in shallow marine ecosystems: the hydroids as an example. Zool Verh Leiden 323:99–105

    Google Scholar 

  • Gili JM, Coma R, Orejas C, López-González PJ, Zabala M (2001) Are Antarctic suspension-feeding communities different from those elsewhere in the world? Polar Biol 24:473–485

    Article  Google Scholar 

  • Gili JM, Rossi S, Pagès F, Orejas C, Teixido N, López-González PJ, Arntz WE (2006) A new trophic link between the pelagic and benthic systems on the Antarctic shelf. Mar Ecol Prog Ser 322:43–49

    Article  Google Scholar 

  • Gili JM, Duró A, García-Valero J, Gasol JM, Rossi S (2008) Herbivory in small carnivores: benthic hydroids as an example. J Mar Biol Ass UK 88:1541–1546

    Article  Google Scholar 

  • Hall DJ, Cooper WE, Werner EE (1970) An experimental approach to the production dynamics and structure of freshwater animal communities. Limnol Oceanogr 15:838–928

    Article  Google Scholar 

  • Hanelt D, Tug H, Bischof K, Gros C, Lippert H, Sawall T, Wiencke C (2001) Light regime in an Arctic fjord: a study related to stratospheric ozone depletion as a basis for determination of UV effects on algal growth. Mar Biol 138:649–658

    Article  CAS  Google Scholar 

  • Holte B, Dahle S, Gulliksen B, Naes K (1996) Some macrofaunal effects of local pollution and glacier-induced sedimentation with indicative chemical analyses in the sediments of two Arctic fjords. Polar Biol 16:549–557

    Article  Google Scholar 

  • Hop H, Pearson T, Hegseth EN et al (2002) The marine ecosystem of Kongsfjorden Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Ishii H, Tanaka F (2001) Food and feeding of Aurelia aurita in Tokyo Bay with an analysis of stomach contents and a measurement of digestion times. Hydrobiol 451:311–320

    Article  Google Scholar 

  • Ito H, Kudoh S (1997) Characteristics of water in Kongsfjorden, Svalbard. Proc NIPR Symp Polar Meteor Glaciol 11:211–232

    Google Scholar 

  • Kellogg DE, Kellogg TB (1982) Diatoms from brittle star stomach contents: implications for sediment re- working. Antarct J US 17:167–169

    Google Scholar 

  • Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar Ecol Progr Ser 102:245–255

    Article  Google Scholar 

  • Laudien J, Herrmann M, Arntz WE (2004) Soft bottom community structure and diversity in Kongsfjorden (Svalbard). In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research performed at the Koldewey station in the years 1991–2003. Ber Polar Meeresf 492:91–102

  • Marfenin NN (1993) Functional morphology of the colonialhydroids. Zoological Institute of Russian Academy of Sciences, St. Petersburg

    Google Scholar 

  • Mehlum F (1991) Breeding population size of the common eider Somateria mollissima in Kongsfjorden, Svalbard, 1981–1987. Nor Polarinst Skr 195:21–29

    Google Scholar 

  • Orejas C, Gili JM, Alva V, Arntz WE (2000) Predatory impact of an epiphytic hydrozoan in an upwelling area in the Bay of Coliumo (Dichato, Chile). J Sea Res 4:209–220

    Article  Google Scholar 

  • Orejas C, Gili JM, López-González PJ, Arntz WE (2001) Feeding strategies and diet composition of four species of Antarctic benthic cnidarians. Polar Biol 24:473–485

    Article  Google Scholar 

  • Paffenhofer GA (1968) Nahrungsaufnahme, Stoffumsatz und Energiehaushalt des marinen Hydropolypen Clava multicornis. Helgol Wiss Meeresunters 8:1–44

    Article  Google Scholar 

  • Palerud R, Gulliksen B, Brattegard T, Sneli JA, Vader W (2004) The marine macro-organisms in Svalbard waters. In: Presterud P, Strøm H, Glodman HV (eds) A catalogue of the terrestrial and marine animals of Svalbard. Skrifter 201, Norwegian Polar Institute, Tromsø

    Google Scholar 

  • Piraino S, Fanelli G, Boero F (2002) Variability of species’ roles in marine communities: change of paradigms for conservation priorities. Mar Biol 140:1067–1074

    Article  Google Scholar 

  • Piwosz K, Walkusz W, Hapter R et al (2009) Comparison of productivity and phytoplankton in a warm (Kongsfjorden) and a cold (Hornsund) Spitsbergen fjord in mid-summer 2002. Polar Biol 32:549–559

    Article  Google Scholar 

  • Porter JW (1974) Zooplankton feeding by the Caribbean reef-building coral Montastrea annularis. In: Proceedings of 2nd international Coral Reef Sympoisum, vol I, pp 111–125

  • Puce S, Bavestrello G, Di Camillo CG, Boero F (2007) Symbiotic relationships between hydroids and bryozoans. Symbiosis 44:137–143

    Google Scholar 

  • Ribes M, Coma R, Gili JM (1998) Heterotrophic feeding by a gorgonian coral with symbiotic zooxanthella. Limnol Oceanogr 43:1170–1179

    Article  Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria : Octocorallia) over a year cycle. Mar Ecol Progr Ser 183:125–137. doi:10.3354/meps183125

    Google Scholar 

  • Ronowicz M (2007) Benthic hydroids (Cnidaria: Hydrozoa) from Svalbard waters—biodiversity and distribution. J Mar Biol Ass UK 87:1089–1094

    Google Scholar 

  • Ronowicz M, Wlodarska-Kowalczuk M, Kuklinski P (2008) Factors influencing hydroids (Cnidaria: Hydrozoa) biodiversity and distribution in Arctic kelp forest. J Mar Biol Ass UK 88:1567–1575

    Article  Google Scholar 

  • Ronowicz M, Wiodarska-Kowalczuk M, Kuklinski P (2011) Patterns of hydroid (Cnidaria, Hydrozoa) species richness and distribution in an Arctic glaciated fjord. Polar Biol 34:1437–1445

    Article  Google Scholar 

  • Rossi S, Ribes M, Coma R, Gili JM (2004) Temporal variability in zooplankton prey capture rate of the passivesuspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar Biol 144:89–99

    Article  Google Scholar 

  • Rossi S, Bramanti L, Broglio E, Gili JM (2012) Population dynamics of short lived species can validate the models of long lived species: the hydrozoan case study. Mar Ecol Progr Ser. doi:10.3354/meps09848

    Google Scholar 

  • Sebens KP, Koehl MAR (1984) Predation on zooplankton by benthic anthozoans Alcyonum siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar Biol 81:255–271

    Article  Google Scholar 

  • Simkina RG (1980) A quantitative feeding study of the colonies of Perigonimus megas (Hydroida, Bougainvillidae). Zool Zh 59:500–506

    Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO et al (2002) The physical environment of Kongsfjorden-Krossfjorden, an Arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • Turner JT (2002) Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat Microb Ecol 27:57–102

    Article  Google Scholar 

  • Voronkov A, Stepanjants SD, Hop H (2010) Hydrozoan diversity on hard bottom in Kongsfjorden, Svalbard. J Mar Biol Ass UK 90:1337–1352

    Article  Google Scholar 

  • Walkusz W, Kwasniewski S, Falk-Petersen S et al (2009) Seasonal and spatial changes in the zooplankton community of Kongsfjorden, Svalbard. Polar Res 28:254–281

    Article  Google Scholar 

  • Weslawski JW, Szymelfenig M, Zajaczkowski M, Keck A (1999) Influence of salinity and suspended matter on benthos of an Arctic tidal flat. ICES J Mar Sci Suppl 56:194–202

    Article  Google Scholar 

  • Widding A, Schlichter D (2001) Phytoplankton: a significant trophic source for soft corals? Helgol Mar Res 55:198–211

    Article  Google Scholar 

  • Wiencke C, Vögele B, Kovaltchouk NA, Hop H (2004) Species composition and zonation of marine benthic macroalgae at Hansneset in Kongsfjorden, Svalbard. Ber Polar Meeresforsch 492:55–62

    Google Scholar 

  • Wiktor J (1999) Early spring microplankton development under fast ice covered fjords of Svalbard Arctic. Oceanol 41:51–72

    Google Scholar 

  • Woelfel J, Schumann R, Leopold P, Wiencke C, Karsten U (2009) Microphytobenthos standing stock along gradients of physical conditions in Arctic Kongsfjorden, Svalbard. Bot Mar 52:573–583

    Article  CAS  Google Scholar 

  • Woelfel J, Schumann R, Peine F, Flohr A, Kruss A, Tegowski J, Blondel P, Wiencke C, Karsten U (2010) Microphytobenthos of Arctic Kongsfjorden (Svalbard, Norway): biomass and potential primary production along the shore line. Polar Biol 33:1239–1253

    Article  Google Scholar 

  • Wotton RS, Malmqvist B (2001) Feces in aquatic ecosystems. Biosciences 51:537–544

    Article  Google Scholar 

  • Yonge CM, Nicholls AG (1930) Studies on thePhysiology of corals. II. Digestive enzymes. Sci Rep Gt Barrier Reef Exped I:59–81

    Google Scholar 

Download references

Acknowledgments

The support of the scientific and technical staff of the Koldewey-Station, the members of the Alfred Wegener Institute (AWI) diving team and the Ny-Ålesund International Research and Monitoring Facility is gratefully acknowledged. Thanks are due to the AWI for technical and financial support. The first author was financially supported by a Deutscher Akademischer Austausch Dienst (DAAD) fellowship (A/96/13073) and a European Commission fellowship from the programme Training and mobility of researchers (TMR-CT97-2813). S. Rossi was funded by a Ramón y Cajal contract (RYC-2007-01327). Special thanks to Prof. Dr. Wolf E. Arntz who supported enthusiastically the development of this work. We would like to dedicate this paper to the memory of our colleague Francesc Pagès, great cnidarian researcher and best friend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Covadonga Orejas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orejas, C., Rossi, S., Peralba, À. et al. Feeding ecology and trophic impact of the hydroid Obelia dichotoma in the Kongsfjorden (Spitsbergen, Arctic). Polar Biol 36, 61–72 (2013). https://doi.org/10.1007/s00300-012-1239-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1239-7

Keywords

Navigation