Skip to main content

Advertisement

Log in

Meiofaunal (re)colonization of the Arctic intertidal (Hornsund, Spitsbergen) after ice melting: role of wrack deposition

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Intertidal meiobenthos of Hornsund—the southernmost fjord of Spitsbergen—was investigated between July and September 2005. Mean total meiofaunal densities ranged between 4.3 and 328 ind. 10 cm−2. Nematode assemblages were impoverished in terms of the number of genera when compared with those from the western Spitsbergen coast (11 vs. 25–28 genera in total, respectively). It is suggested that severe environmental conditions in the southern part of Spitsbergen overcome the adaptation skills of many nematode species and hamper the establishment of a diverse community. Comparatively high nematode numbers on a beach subject to heavy macroalgal wrack input contrast sharply with numerically poor communities in sparse-wrack beaches (up to 315 vs. 31 ind. 10 cm−2, respectively). It is suggested that the wrack input to the Arctic beach may substantially influence the richness and composition of the intertidal meiobenthic community. Nematode assemblages were dominated by extreme colonizers: Geomonhystera disjuncta and rhabditids. Their relatively high densities in beach sediments recorded at the beginning of July indicate their ability to recover rapidly after the winter period and to effective (re)colonization of the intertidal habitat just after the ice melt. Average concentration of rhabditids and monhysterids associated with macroalgal wrack deposited on the upper shore was as high as 52 × 103 individuals per gram of the substrate. It is hypothesized that nematodes can play a substantial role in the wrack decomposition in the Arctic intertidal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkemade R, Wielemaker A, De Jong SA, Sandee AJJ (1992) Experimental evidence for the role of bioturbation by the marine nematode Diplolaimella dievengatensis in stimulating the mineralization of Spartina anglica leaves. Mar Ecol Prog Ser 90:149–155

    Article  Google Scholar 

  • Alkemade R, Van Rijsvijk P (1993) Path analyses of the influence of substrate composition on nematode numbers and on decomposition of stranded seaweed at an Antarctic coast. Neth J Sea Res 31:63–70

    Article  Google Scholar 

  • Aller RC, Aller JY (1992) Meiofauna and solute transport in marine muds. Limnol Oceanogr 37:1018–1033

    CAS  Google Scholar 

  • Bick A, Arlt G (2005) Intertidal and subtidal soft-bottom macro- and meiofauna of the Kongsfjord (Spitsbergen). Polar Biol 28:550–557

    Article  Google Scholar 

  • Bjørnsen PK (1986) Automatic determination of bacterioplankton biomass by image analysis. Appl Environ Microbiol 51:1199–1204

    PubMed  Google Scholar 

  • Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Processes Landforms 26:1237–1248

    Article  Google Scholar 

  • Bongers T, Alkemade R, Yeates GW (1991) Interpretation of disturbance-induced maturity decrease in marine nematode assemblages by means of the maturity index. Mar Ecol Prog Ser 76:135–142

    Article  Google Scholar 

  • De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2003) Influence of bacterivorous nematodes on the decomposition of cordgrass. J Exp Mar Biol Ecol 296:227–242

    Article  Google Scholar 

  • De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J (2004) Top-down impact of of bacterivorous nematodes on the bacterial community: a microcosm study. Environ Microbiol 6:733–744

    Article  PubMed  Google Scholar 

  • Elmgren R (1973) Methods of sampling sublittoral soft bottom meiofauna. Oikos Suppl 15:112–120

    Google Scholar 

  • Epstein SS, Rossel J (1995) Enumeration of sandy sediment bacteria: search for optimal protocol. Mar Ecol Prog Ser 117:289–298

    Article  Google Scholar 

  • Forster SJ (1998) Osmotic stress tolerance and osmoregulation of intertidal and subtidal nematodes. J Exp Mar Biol Ecol 224:109–125

    Article  Google Scholar 

  • Gerlach SA (1965) Freilebende Meeresnematoden aus der Gezeitenzone von Spitzbergen. In: Gerlach SA and Hohnk W (eds) Veröff Inst Meeresforsch Bremerhaven, vol. 9, pp 109–172

  • Inglis WG, Coles JW (1961) The species of rhabditids (Nematoda) found in rotting seaweed on British beaches. Bull Br Mus (Natural History) 7:320–333

    Google Scholar 

  • Mielke W (1974) Eulitorale harpacticoidea (Copepoda) von Spitsbergen. Mikrofauna Meeresboden 37:161–210

    Google Scholar 

  • Moens T, Vierstraete A, Vincx M (1996) Life strategies in two bacterivorous marine nematodes: preliminary results. PSZNI Mar Ecol 17:509–518

    Article  Google Scholar 

  • Moens T, Vincx M (1997) Observations on the feeding ecology of estuarine nematodes. J Mar Biol Assoc UK 77:211–227

    Article  Google Scholar 

  • Moens T, Verbeeck L, Vincx M (1999) Preservation- and incubation-time induced bias in tracer-aided grazing studies on meiofauna. Mar Biol 133:69–77

    Article  Google Scholar 

  • Moens T, dos Santos GAP, Thompson F, Swings J, Fonsêca-Genevois V, De Mesel I (2005) Do nematode mucus secretions affect bacterial growth? Aquat Microb Ecol 40:77–83

    Article  Google Scholar 

  • Mokievsky VO (1992) Composition and distribution of intertidal meiofauna of Isfjorden, West Spitsbergen. Pol Polar Res 13:31–40

    Google Scholar 

  • Palmer M (1988) Dispersal of marine meiofauna: a review and conceptual model explaining passive transport and active emergence with implications for recruitment. Mar Ecol Prog Ser 48:81–91

    Article  Google Scholar 

  • Platt HM, Warwick RM (1983) Freeliving marine nematodes. Part I. British Enoplids. In: Kermack DM, Barnes RSK (eds) Synopses of the British fauna (New Series), No. 28. Cambridge University Press, Cambridge, p 307

  • Radziejewska T, Stañkowska-Radziun M (1979) Intertidal meiofauna of Recherchefjorden and Malbukta, Vest-Spitsbergen. Sarsia 64:253–258

    Google Scholar 

  • Ronowicz M (2005) Species diversity of Arctic gravel beach: case study for species poor habitats. Pol Polar Res 26:287–297

    Google Scholar 

  • Siwecki R, Swerpel S (1979) Oceanographical investigations in Hornsund, 1974–1975. Oceanografia 6:45–58

    Google Scholar 

  • Szymelfenig M, Kwaśniewski S, Węsławski JM (1995) Intertidal zone of Svalbard 2. Meiobenthos density and occurrence. Polar Biol 15:137–141

    Article  Google Scholar 

  • Tietjen JH, Lee JJ, Rullman J, Greengart A, Trompeter J (1970) Gnotobiotic culture and physiological ecology of the marine nematode Rhabditis marina Bastian. Limnol Oceanogr 15:535–543

    Article  Google Scholar 

  • Traunspurger W (1997) Bathymetric, seasonal and vertical distribution of feeding types of nematodes in an oligotrophic lake. Vie Milieu 47(1):1–7

    Google Scholar 

  • Ullberg J, Olafsson E (2003) Effects of biological disturbance by Monoporeia affinis (Amphipoda) on small-scale migration of marine nematodes in low-energy soft sediments. Mar Biol 143:867–874

    Article  Google Scholar 

  • Urban-Malinga B, Kotwicki L, Gheskiere T, Jankowska K, Opaliński KW, Malinga M (2004) Composition and distribution of meiofauna, including nematode genera in two contrasting Arctic beaches. Polar Biol 27:447–457

    Article  Google Scholar 

  • Urban-Malinga B, Wiktor J, Jabłońska A, Moens T (2005) Intertidal meiofauna of a high-latitude glacial Arctic fjord (Kongsfjorden, Svalbard) with emphasis on the structure of free-living nematode communities. Polar Biol 28:940–950

    Article  Google Scholar 

  • Urban-Malinga B, Moens T (2006) Fate of labile organic matter in Arctic intertidal sediments: is utilization by meiofauna important? J Sea Res 56:239–248

    Article  CAS  Google Scholar 

  • Vincx M (1996) Meiofauna in marine and freshwater sediments. In: Hall GS (eds) Methods for the examination of organismal diversity in soil and sediments. CAB International, Wallingford, pp 187–195

    Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Free-living marine nematodes. Part III. Monhysterids. In: Barnes RSK, Crothers JH (eds) Synopses of the British fauna (New Series), No. 53. Field Studies Council, Shrewsbury, p 296

  • Węsławski M, Wiktor J, Zajączkowski M, Swerpel S (1993) Intertidal zone of Svalbard. 1. Macroorganism distribution and biomass. Polar Biol 13:73–79

    Google Scholar 

  • Wieser W (1953) Beziehungen zwischen Mundhhlengstalt, Ernahrungsweise und Vorkommen bei Freilebenden marinen Nematoden. Ark Zool 2:439–484

    Google Scholar 

Download references

Acknowledgments

This study was possible thanks to the facilities of the Polish Polar Station in Horsnund. The crew of the Station is gratefully acknowledged by the first author for hospitality and providing meteorological data. Marcin Węsławski is acknowledged for support and Aleksandra Swistulska for help at the field work. Katarzyna Jankowska helped with the sampling in September. Organic carbon and nitrogen content were measured by Dorota Burska. Jan Matuła and Bronisław Wojtun are acknowledged for a company and nice working environment. Three anonymous referees are gratefully acknowledged for valuable remarks and suggestions which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Urban-Malinga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban-Malinga, B., Drgas, A., Ameryk, A. et al. Meiofaunal (re)colonization of the Arctic intertidal (Hornsund, Spitsbergen) after ice melting: role of wrack deposition. Polar Biol 32, 243–252 (2009). https://doi.org/10.1007/s00300-008-0525-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-008-0525-x

Keywords

Navigation