Skip to main content
Log in

Aglomerularism in Harpagifer bispinis: a subantarctic notothenioid fish living at reduced salinity

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

We investigated the renal morphology, histology and ultrastructure of Harpagifer bispinis, as a first step toward understanding the morpho-functional basis of its adaptation to potentially freezing brackish seawater. Fish were separated into two groups of ten individuals each, and acclimated to 2‰ and 38‰ salinity. A study of complete serial sections of the kidney revealed that the nephrons were aglomerular. At the highly convoluted proximal segment two different regions were evident, a feature that has not been previously reported for other aglomerular species. In electron photomicrographs we distinguished light and dark cells in the proximal tubule epithelium, with highly infolded basolateral membranes and closely associated mitochondria. The dark cells also had a large number of mitochondria in the apical region. The intercellular spaces at the epithelium of the proximal tubule were larger in fish acclimated at 2‰ salinity, a modification that might facilitate urine secretion, thus contributing to the survival of an aglomerular fish in a hyposmotic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5 Fig. 6 Fig. 7a, b

Similar content being viewed by others

References

  • Baustein MD, Wang SQ, Beyenbach KW (1997) Adaptive responses of aglomerular toadfish to dilute seawater. J Comp Physiol B 167:61–69

    Article  Google Scholar 

  • Bulger RE (1965) The fine structure of the aglomerular nephron of the toadfish, Opsanus tau. Am J Anat 117:171–192

    CAS  PubMed  Google Scholar 

  • Bulger RE, Trump BF (1968) Renal morphology of the English sole (Parophrys vetulus). Am J Anat 123:195–226

    CAS  PubMed  Google Scholar 

  • Clarke A, Johnston IA (1996) Evolution and adaptative radiation of Antarctic fishes. Trends Evol Ecol 11:212–218

    Article  Google Scholar 

  • DeVries AL (1982) Biological antifreeze agents in coldwater fishes. Comp Biochem Physiol A73:627–266

    Article  Google Scholar 

  • Dobbs GH, DeVries AL (1975a) Renal function in Antarctic teleost fish: serum and urine composition. Mar Biol 29:59–70

    CAS  Google Scholar 

  • Dobbs GH, DeVries AL (1975b) The aglomerular nephron of Antarctic teleost: a light and electron microscopic study. Tissue Cell 7:159-170

    PubMed  Google Scholar 

  • Dobbs GH, Lin Y, DeVries AL (1974) Aglomerularism in Antarctic fish. Science 185:793–794

    CAS  PubMed  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology. Evolution in a unique environment. Academic, San Diego

  • Eastman JT, DeVries A (1986a) Renal glomerular evolution in Antartic notothenioid fishes. J Fish Biol 29:649–662

    Google Scholar 

  • Eastman JT, DeVries A (1986b) Antarctic fish. Sci Am 254:106–114

    Google Scholar 

  • Elger M, Hentschel H, Dawson M, Renfro JL (2000) Microscopic functional anatomy: urinary tract. In: Ostrander G (ed) The laboratory fish. Academic, New York, pp 385–413

  • Ernst SA, Mills JW (1977) Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J Cell Biol 75(1):74–94

    CAS  PubMed  Google Scholar 

  • Fernández D (2000) Histoquímica, distribución y crecimiento de las fibras musculares en nototénidos subantárticos. Análisis inicial de dos factores relacionados: flotabilidad y temperatura. Universidad de Buenos Aires. Graduate thesis

  • Fischer W, Hureau JC (1985) FAO species identification sheets for fishery purposes. Southern Ocean (Fishing areas 48,58 and 88) (CCAMLR Convention Area). Prepared and published with the support of the Commission for the Conservation of Antarctic Marine Living Resources. FAO, Rome, vol 2, pp 233–470

  • Gonzalez-Cabrera PJ, Dowd F, Pedibhotla VK, Rosario R, Stanley-Samuelson D, Petzel D (1995) Enhanced hypo-osmoregulation induced by warm-acclimation in Antarctic fish is mediated by increased gill and kidney Na+/K+-ATPase activities. J Exp Biol 198:2279–2291

    CAS  PubMed  Google Scholar 

  • Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 1. Academic, New York, pp 91–239

  • Lahlou B, Henderson W, Sawyer WH (1969) Renal adaptations by Opsanus tau, a euryhaline aglomerular teleost, to dilute media. Am J Physiol 216:1266–1272

    CAS  PubMed  Google Scholar 

  • Massini MA, Sturla M, Prato P, Uva B (2001) Ion transport systems in the kidney and urinary bladder of two Antarctic teleosts, Chionodraco hamatus and Trematomus bernacchii. Polar Biol 24:440–446

    Article  Google Scholar 

  • Ogawa M (1961) Comparative study of the external shape of the teleostean kidney with relation to phylogeny. Sci Rep Tokyo Kyoiku Daigaku Sect B10:61–69

    Google Scholar 

  • Olsen S, Ericsson JLE (1968) Ultrastructure of the tubule of the aglomerular teleost Nerophis ophidion. Z Zellforsch 87:17–30

    CAS  PubMed  Google Scholar 

  • Pérez A, Luquet C, Calvo J (2001) Morfología renal de los nototenoideos subantárticos Harpagifer bispinis y Patagonotothen tessellata. Aglomerulismo en un pez eurihalino. Congreso Brasileño de Ictiología. San Leopoldo, Rio Grande Do Sul, Brazil

  • Perry SF, Fryer JN (1997) Proton pumps in the fish gill and kidney. Fish Physiol Biochem 17:363–369

    Article  CAS  Google Scholar 

  • Romão S, Freire CA, Fanta E (2001) Ionic regulation and Na+, K+-ATPase activity in gills and kidney of the Antarctic aglomerular cod icefish exposed to dilute sea water. J Fish Biol 59:463–468

    Article  Google Scholar 

  • Schmidt-Nielsen K (1976) Regulación del agua y regulación osmótica. In: Fisiología animal. Adaptación y medio ambiente. Ediciones Omega, Barcelona, pp 263–312

  • Trump BF, Bulger RE (1971) Experimental modification of lateral and basilar plasma membranes and extracellular compartments in the flounder nephron. Fed Proc Fed Am Soc Exp Biol 30:22–41

    CAS  Google Scholar 

  • Wendelaar Bonga SE (1973) Morphometrical analysis with the light and electron microscope of the kidney of the anadromous three-spined stickleback Gasterosteus aculeatus, form trachurus, from fresh water and from sea water. Z Zellforsch Mikrosk Anat 137:563–588

    PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Martin Ansaldo, Elba Morriconi, Daniel Aureliano, Fabian Vanella, Griselda Genovese and Julia Halperin for their kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Analía Fernanda Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, A.F., Calvo, J., Tresguerres, M. et al. Aglomerularism in Harpagifer bispinis: a subantarctic notothenioid fish living at reduced salinity. Polar Biol 26, 800–805 (2003). https://doi.org/10.1007/s00300-003-0551-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-003-0551-7

Keywords

Navigation