Skip to main content
Log in

Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Six foxtail millet ASR genes were regulated by various stress-related signals. Overexpression of ASR1 increased drought and oxidative tolerance by controlling ROS homeostasis and regulating oxidation-related genes in tobacco plants.

Abstract

Abscisic acid stress ripening (ASR) proteins with ABA/WDS domains constituted a class of plant-specific transcription factors, playing important roles in plant development, growth and abiotic stress responses. However, only a few ASRs genes have been characterized in crop plants and none was reported so far in foxtail millet (Setaria italic), an important drought-tolerant crop and model bioenergy grain crop. In the present study, we identified six foxtail millet ASR genes. Gene structure, protein alignments and phylogenetic relationships were analyzed. Transcript expression patterns of ASR genes revealed that ASRs might play important roles in stress-related signaling and abiotic stress responses in diverse tissues in foxtail millet. Subcellular localization assays showed that SiASR1 localized in the nucleus. Overexpression of SiASR1 in tobacco remarkably increased tolerance to drought and oxidative stresses, as determined through developmental and physiological analyses of germination rate, root growth, survival rate, relative water content, ion leakage, chlorophyll content and antioxidant enzyme activities. Furthermore, expression of SiASR1 modulated the transcript levels of oxidation-related genes, including NtSOD, NtAPX, NtCAT, NtRbohA and NtRbohB, under drought and oxidative stress conditions. These results provide a foundation for evolutionary and functional characterization of the ASR gene family in foxtail millet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ASR:

Abscisic acid stress ripening

CAT:

Catalase

DAB:

3,3′-Diaminobenzidine

GFP:

Green fluorescent protein

MDA:

Malonaldehyde

MV:

Methyl viologen

NBT:

Nitroblue tetrazolium

POD:

Peroxidase

qRT-PCR:

Quantitative real-time PCR

RWC:

Relative water content

SOD:

Superoxide dismutase

References

  • Alam MM, Tanaka T, Nakamura H, Ichikawa H, Kobayashi K, Yaeno T, Yamaoka N, Shimomoto K, Takayama K, Nishina H, Nishiguchi M (2015) Overexpression of a rice heme activator protein gene (OsHAP2E) confers resistance to pathogens, salinity and drought, and increases photosynthesis and tiller number. Plant Biotechnol J 13:85–96

    Article  PubMed  CAS  Google Scholar 

  • Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin Fdos S, Mariath J, Silverio A, Sachetto-Martins G, Margis R, Wang ZY, Margis-Pinheiro M (2014) New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes. Mol Plant 7:709–721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briesemeister S, Rahnenfuhrer J, Kohlbacher O (2010) YLoc-an interpretable web server for predicting subcellular localization. Nucl Acids Res 38:W497–W502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cakir B, Agasse A, Gaillard C, Saumonneau A, Delrot S (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9:57–59

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Zhao Y, Zhuo C, Lu S, Guo Z (2015) Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J 13:482–491

    Article  PubMed  CAS  Google Scholar 

  • Cortés AJ, Chavarro MC, Madriñán S, This D, Blair MW (2012) Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genet 13:58–71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    Article  PubMed  CAS  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • González RM, Iusem ND (2014) Twenty years of research on Asr (ABA-stress-ripening) genes and proteins. Planta 239:941–949

    Article  PubMed  CAS  Google Scholar 

  • Hsu YF, Yu SC, Yang CY, Wang CS (2011) Lily ASR protein-conferred cold and freezing resistance in Arabidopsis. Plant Physiol Biochem 49:937–945

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464

    Article  PubMed  CAS  Google Scholar 

  • Hu YX, Yang X, Li XL, Yu XD, Li QL (2014) The SlASR gene cloned from the extreme halophyte Suaeda liaotungensis K. enhances abiotic stress tolerance in transgenic Arabidopsis thaliana. Gene 549:243–251

    Article  PubMed  CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  CAS  Google Scholar 

  • Iusem ND, Bartholomew DM, Hitz WD, Scolnik PA (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol 102:353–1354

    Article  Google Scholar 

  • Kim SJ, Lee SC, Hong SK, An K, An G, Kim SR (2009) Ectopic expression of a cold-responsive OsAsr1 cDNA gives enhanced cold tolerance in transgenic rice plants. Mol Cells 27:449–458

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Kim YS, Yoon HS (2012) Rice ASR1 protein with reactive oxygen species scavenging and chaperone-like activities. Mol Cells 33:285–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227:1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic, genomic studies in bioenergy grasses. Crit Rev Biotechnol 33:328–343

    Article  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucl Acids Res 40:D302–D305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  PubMed  CAS  Google Scholar 

  • Li RH, Liu GB, Wang H, Zheng YZ (2013) Effects of Fe3+ and Zn2+ on the structural and thermodynamic properties of a soybean ASR protein. Biosci Biotechnol Biochem 77:475–481

    Article  PubMed  CAS  Google Scholar 

  • Liu HY, Dai JR, Feng DR, Liu B, Wang HB, Wang JF (2010) Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J Integr Plant Biol 52:315–323

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Xu ZS, Lu PP, Hu D, Chen M, Li LC, Ma YZ (2013) A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot 64:2915–2927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWweese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a conserved domain database for protein classification. Nucl Acids Res 33:D192–D196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthamilarasan M, Prasad M (2015) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theor Appl Genet 128:1–14

    Article  PubMed  CAS  Google Scholar 

  • Puranik S, Jha S, Srivastava PS, Sreenivasulu N, Prasad M (2011) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    Article  PubMed  CAS  Google Scholar 

  • Ricardi MM, González RM, Zhong S, Domínguez PG, Duffy T, Turjanski PG, Salgado Salter JD, Alleva K, Carrari F, Giovannoni JJ, Estévez JM, Iusem ND (2014) Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor. BMC Plant Biol 14:1–29

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Shkolnik D, Bar-Zvi D (2008) Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding. Plant Biotechnol J 6:368–378

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011) Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol 14:691–699

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Virlouvet L, Jacquemot MP, Gerentes D, Corti H, Bouton S, Gilard F, Valot B, Trouverie J, Tcherkez G, Falque M, Damerval C, Rogowsky P, Perez P, Noctor G, Zivy M, Coursol S (2011) The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol 157:917–936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008) Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol 148:1953–1963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Xiong TF, Ni ZY, Chen XP, Chen M, Li LC, Ma YZ (2009) Isolation and identification of two genes encoding leucine-rich repeat (LRR) proteins differentially responsive to pathogen attack and salt stress in tobacco. Plant Sci 176:38–45

    Article  CAS  Google Scholar 

  • Yan HR, Jia HH, Chen XB, Hao LL, An HL, Guo X (2014) The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Plant Cell Physiol 55:2060–2076

    Article  PubMed  Google Scholar 

  • Yang CY, Wu CH, Jauh GY, Huang JC, Lin CC, Wang CS (2008) The LLA23 protein translocates into nuclei shortly before desiccation in developing pollen grains and regulates gene expression in Arabidopsis. Protoplasma 223:241–254

    Article  CAS  Google Scholar 

  • Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D (2014a) The overexpression of a maize mitogen-activated protein kinase gene (ZmMPK5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol (Stuttg) 16:558–570

    Article  CAS  Google Scholar 

  • Zhang XY, Wang LM, Xu XY, Cai CP, Guo WZ (2014b) Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton. BMC Plant Biol 14:345–361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Hu W, Wang Y, Feng R, Zhang Y, Liu J, Jia C, Miao H, Zhang J, Xu B, Jin Z (2015) The MaASR gene as a crucial component in multiple drought stress response pathways in Arabidopsis. Funct Integr Genom 15:247–260

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Transgenic Key Project of Ministry of Agriculture (2014ZX08009-016B and 2014ZX08002-003B). We are grateful to Dr. Xianmin Diao, Institute of Crop Science, Chinese Academy of Agricultural Sciences, for kindly providing foxtail millet seeds.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Shi Xu or You-Zhi Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by M. Menossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Supplemental Fig. S1 (A) Conserved domains of SiASR proteins. (B) Phylogenetic relationship of SiASRs. (C) Structure of SiASR genes. (TIFF 414 kb)

Supplementary material 2

Supplemental Fig. S2 Multiple sequence alignments of SiASR full-length CDs. (TIFF 318 kb)

Supplementary material 3

Supplemental Fig. S3 Multiple sequence alignments of SiASR full-length proteins. (TIFF 1261 kb)

Supplementary material 4

Supplemental Fig. S4 Multiple alignments of SiASR proteins with other ASR proteins. (TIFF 2426 kb)

Supplementary material 5

Supplemental Fig. S5 Variation in motif clades for ASR proteins from foxtail millet with other ASR proteins. The MEME motifs are shown as differently colored boxes. (TIFF 766 kb)

Supplementary material 6

Supplemental Fig. S6 Conserved motifs identified for ASR proteins by MEME software. (TIFF 823 kb)

Supplementary material 7

Supplemental Fig. S7 Predicted secondary structure of SiASR1 protein by Phyre2. (TIFF 69 kb)

Supplementary material 8

Supplemental Table S1. Nomenclature of ASRs in foxtail millet and other species. (XLS 36 kb)

Supplementary material 9

Supplemental Table S2. Primers used in this study. (XLS 24 kb)

Supplementary material 10

Supplemental Table S3. Prediction of cis-elements in SiASR from database analysis. The data were obtained from PLACE (http://www.dna.affrc.go.jp/PLACE/). (XLS 12 kb)

Supplementary material 11

Supplemental Table S4. Drought-induced foxtail millet ASR genes from the de novo transcriptome assembly sequencing data. The whole foxtail millet seedlings were used for the experiment. FDR: false discovery rate. (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZJ., Xu, ZS., Sun, J. et al. Investigation of the ASR family in foxtail millet and the role of ASR1 in drought/oxidative stress tolerance. Plant Cell Rep 35, 115–128 (2016). https://doi.org/10.1007/s00299-015-1873-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1873-y

Keywords

Navigation